Skip to main content
Log in

Sizing of nozzles, venturis, orifices, control and safety valves for initially sub-cooled gas/liquid two-phase flow – The HNE-DS method

Auslegung von Düsen, Venturis, Blenden, Stell- und Sicherheitsventilen für eingangs unterkühlte Gas-Flüssigkeits-Strömungen nach der HNE-DS Methode

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Current standards for sizing nozzles, venturis, orifices, control and safety valves are based on different flow models, flow coefficients and nomenclature. They are generally valid only for single-phase gas and liquid flow. Common to all is the concept of one-dimensional nozzle flow in combination with a correction factor (e.g. the discharge coefficient) to correct for non-idealities of the three-dimensional flow. With the proposed partial non-equilibrium HNE-DS method an attempt is made to standardize all sizing procedures by an appropriate nozzle flow model and to enlarge the application range of the standards to two-phase flow. The HNE-DS method, which was first developed for saturated and non-flashing two-phase flow, is extended for initially sub-cooled liquids entering the throttling device. To account for non-equilibrium effects, i.e. superheated liquid due to rapid depressurisation, the non-equilibrium coefficient used in the HNE-DS method is adapted to those inlet flow conditions. A comparison with experimental data demonstrates the good accuracy of the model.

Zusammenfassung

Die derzeitigen Regelwerke zur Auslegung von Düsen, Venturies, Blenden, Stell- und Sicherheitsventilen basieren auf verschiedenen Strömungsmodellen, Durchflusskoeffizienten und sind mit verschiedenen Nomenklaturen beschrieben. Sie gelten nur für Einphasenströmung von Gasen und Flüssigkeiten. Gemeinsam ist den Modellen in den Regelwerken die Kombination aus einer idealisierten Düsenströmung und einem Korrekturfaktor (z.B. dem Ausflusskoeffizienten), um die Nicht-Idealitäten der dreidimensionalen realen Strömung zu korrigieren. Die neue HNE-DS Methode, ein Düsen-Strömungsmodell mit Gasen und Flüssigkeiten im partiellen Ungleichgewicht, erlaubt es, die bestehenden Auslegungsempfehlungen in den verschiedenen Regelwerken zu vereinheitlichen und gleichzeitig auf Zweiphasenströmungen zu erweitern. Die HNE-DS Methode, die zunächst für siedende und nicht-verdampfende Zweiphasenströmungen entwickelt worden ist, wird erweitert für anfangs unterkühlte Flüssigkeiten im Eintritt der Armaturen. Ungleichgewichtseffekte, beispielsweise die Überhitzung der Flüssigkeit bei schnellem Druckabfall, werden mit einem erweiterten Ungleichgewichtsfaktor im HNE-DS Modell berücksichtigt. Der Vergleich mit experimentellen Daten zeigt die gute Genauigkeit des Modells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. API 520 (2000) Sizing, selction, and installation of pressure-relieving devices in refineries, Part I sizing and selection, 7th Edition. American Petroleum Institute, January 2000

  2. ISO 23521 (2006) Petroleum, petrochemical and natural gas industries – Pressure-relieving and depressuring systems. DIN Deutsches Institute für Normung e.V., Beuth Verlag GmbH, Berlin

  3. Leung JC (1986) A generalized correlation for one-component homogeneous equilibrium flashing choked flow. AIChE J 32(10):1743–1746

    Article  Google Scholar 

  4. Leung JC (1990) Similarity between flashing and non-flashing two-phase flows. AIChE J 36(5):797–800

    Article  Google Scholar 

  5. Fischer HG, Forrest JS, Grossel SS, Huff JE, Muller AR, Noronha JA, Shaw DA, Tilley BJ (1992) Emergency Relief System Design Using DIERS Technology, DIERS Project Manual

  6. Etchells J, Wilday J (1998) Workbook for chemical reactor relief system sizing. HSE Contract Research Report 136

  7. CCPS of AIChE (1998) Guidlines for pressure relief and effluent handling systems. AIChE, New York

  8. Bolle L, Downar-Zapolski P, Franco J, Seynhaeve JM (1995) Flashing water flow through a safety valve. J Loss Prev Proc 8(2):111–126

    Article  Google Scholar 

  9. Celata GP, Guidi G (1996) Problems about the sizing of two-phase flow safety valves. Heat Technol 14(1):67–95

    Google Scholar 

  10. Henry R, Fauske H (1971) The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes. J Heat Transf 93(5):179–187

    Google Scholar 

  11. Diener R, Schmidt J (2004) Sizing of throttling devices for gas liquid two-phase flow, Part 1: safety valves. Process Saf Prog 23(4):335–344

    Article  Google Scholar 

  12. Diener R, Schmidt J (2005) Sizing of throttling devices for gas liquid two-phase flow, Part 2: control valves, orifices and nozzles. Process Saf Prog 24(1):29–37

    Article  Google Scholar 

  13. Diener R, Schmidt J (1998) Extended ω-method applicable for low inlet mass flow qualities. 13th Mtg ISO/TC185/WG1, Ludwigshafen, Germany, 15–16 June 1998

  14. Schmidt J, Friedel L, Westpahl F, Wilday J, Gruden M, van der Geld C (2001) Sizing of Safety Valves for Two Phase Gas/Liquid Mixtures. 10th Int. Symposium on Loss Prevention and Safety Promotion in the Process Industrie, Stockholm, 19–21 June 2001

  15. ISO/DIS-4126-10 (2006) Safety devices for protection against excessive pressure – sizing of safety valves and connected inlet and outlet lines for gas/liquid two-phase flow. DIN Deutsches Institute für Normung e.V., Beuth Verlag GmbH, Berlin

  16. Diener R, Kiesbauer J, Schmidt J (2005) Improved valve sizing for multiphase flow – HNE-DS method based on an expansion factor similar to gaseous media to account for changes in mixture density. Hydrocarb Process 84(3):59–64

    Google Scholar 

  17. ISO 5167 2/3 (2000) Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. DIN Deutsches Institute für Normung e.V., Beuth Verlag GmbH, Berlin

  18. EN-ISO 9300 (2003) Measurement of gas flow by means of critical venturi nozzles. DIN Deutsches Institute für Normung e.V., Beuth Verlag GmbH, Berlin

  19. Woodward JL (1995) An amended method for calculation omega for a homogeneous equilibrium model of prediting discharge rates. J Loss Prev Proc 8(5):253–259

    Article  Google Scholar 

  20. Leung JC (1994) Flashing flow discharge of initially sub-cooled liquid in pipes. J Fluid Eng 116:643–645

    Article  Google Scholar 

  21. Leung JC (1988) A Generalized Correlation for Flashing Choked Flow of Initially Sub-cooled Liquid. AIChE J 34(4):688–691

    Article  Google Scholar 

  22. Sozzi GL, Sutherland WA (1975) Critical flows of saturated and subcritical water at high pressure. General Electric, San Jose, CA, NEDO-13418, July 1975

  23. Plesset MS, Zwick SA (1954) The groth of vapour bubble in superheated liquids. J Appl Phys 25(4):493–500

    Article  MATH  MathSciNet  Google Scholar 

  24. Abuaf N, Jones OC, Wu BJC (1983) Critical flow in Nozzles with sub-cooled inlet conditions. J Heat Transf 105:379–383

    Article  Google Scholar 

  25. Alamgir M, Lienhard JH (1981) Correlation of pressure undershoot during hot-water depressurisation. Trans ASME 103:52–55

    Google Scholar 

  26. Boivin JY (1979) Two-phase critical flow in long nozzles. Nucl Technol 46

  27. Lee DH, Swinnerton D (1983) Critical flow of subcooled water at very high pressure relevant to an ATWS. Safety and Engineering Science Division

  28. Simoneau RJ, Hendricks RC (1984) Two phase flow of cryogenic fluids in converging-diverging nozzles. NASA Technical Paper

  29. Veneau T (1995) Etude expérimentale et modélisation de la décompression d’un réservoir de stockage de propane. Thèse de doctorat – Institut National Polytechnique de Grenoble

  30. Seynhaeve (2006) private communication

  31. Boccardi G, Bubbico R, Celata GP, Mazzarotta B (2005) Two-phase flow through pressure safety valves. Experimental investigation and model prediction. Chem Eng Sci 60:5284–5293

    Article  Google Scholar 

  32. Bolle L, Downar-Zapolski P, Franco J, Seynhaeve JM (1995) Flashing water flow through a safety valve. J Loss Prev Proc 8(2):111–126

    Article  Google Scholar 

  33. Sallet DW (1984) Thermal hydraulics of valves for nuclear applications. Nucl Sci Eng 88:220–244

    Google Scholar 

  34. Lenzing T (2001) Theoretische und Experimentelle Untersuchungen zu dem über Vollhubsicherheitsventile abführbaren Massenstrom bei Einphasen- und Zweiphasenströmung, Fortschritt-Berichte VDI Reihe 3 Nr. 718 VDI Verlag

  35. Darby R (2004) On two-phase frozen and flashing flows in safety relief valves – recommended calculation method and the proper use of the discharge coefficient. J Loss Prev Proc 17:255–259

    Article  Google Scholar 

  36. Schmidt J (2006) Sizing of Safety Valves, Control Valves, Orifices and Nozzles – HNE-DS model applied for two-phase critical flow with saturated and initially subcooled liquid. European DIERS User Group meeting, London, UK, April 2006

  37. Kim SW, No HC (2001) Subcooled water critical pressure and critical flow rate in safety valve. Int J Heat Mass Transf 44:4567–4577

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J. Sizing of nozzles, venturis, orifices, control and safety valves for initially sub-cooled gas/liquid two-phase flow – The HNE-DS method . Forsch Ingenieurwes 71, 47–58 (2007). https://doi.org/10.1007/s10010-006-0043-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-006-0043-3

Keywords

Navigation