Skip to main content
Log in

Influence of air intake pipe on engine exhaust emission

Einfluss des Luftansaugstutzens von Motoren auf die Abgasemissionen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

The exhaust emissions of a four-cylinder four-stroke petrol engine have been measured. Tests have been conducted at engine speeds ranges from 1000 to 4000 rpm and at air intake pipe diameters of 20, 25, 30, 35, 40 and 63 mm. The results demonstrate that the concentrations of the hydrocarbon (HC) and that of the carbon monoxide (CO) are relatively high at small air intake pipe diameter of 20 mm and at low engine speed of about 1000 rpm. Both pollutants have a minimum at large air intake pipe diameter of about 63 mm and at high engine speed of about 4000 rpm. The exhaust emissions HC and CO increase also as the ambient pressure decreases and as the altitude of the engine increases. The values of carbon dioxide (CO2) and the oxygen (O2) remain relatively constant at a wide range of different operating conditions. Therefore the knowledge about the effect of the above parameters could lead to improve the emission control technology as well as the engine performance on engine development and design.

Zusammenfassung

In diesem Beitrag sind Ergebnisse der Messungen von Abgasemissionen eines 4-Zylinder-4-Takt Benzinmotors in Abhängigkeit von unterschiedlichen Ausführungen des Luftansaugstutzens dargestellt. Die Messungen wurden in einem Drehzahlbereich von 1000 bis 4000 min-1 und für einen Durchmesserbereich von 20 bis 63 mm des Luftansaugstutzens ausgeführt. Im Bereich kleiner Abmessungen des Ansaugstutzens und geringer Drehzahlen weist der Gehalt an Kohlenwasserstoffen und Kohlenmonoxid in den Abgasen ein Maximum auf, während für grosse Abmessungen und hohe Drehzahlen ein Minimum dieser Werte vorliegt. Mit abnehmendem Umgebungsdruck ist ebenfalls eine Zunahme der Abgasemissionen festzustellen. Die Anteile an Kohlendioxid und Sauerstoff bleiben hingegen in einem weiten Bereich der Versuchsparameter weitgehend konstant. Die vorliegenden Ergebnisse ermöglichen eine weitere Verbesserung der Abgastechnologie und der allg. Leistungscharakteristik von Verbrennungsmotoren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heywood JB (2004) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  2. Mathur ML, RP Sharma RP (1996) Internal combustion engines. Dhanpat Rai & Sons, New Delhi

    Google Scholar 

  3. John G, John RC (2000) A survey of exposure to diesel engine exhaust emissions in the workplace. Ann Hyg 44:435–447

    Google Scholar 

  4. JeanClare S, Jacob DM, Andrew PG, Kristen N, Steven KS, Michael G, Joe LM (2002) Mutagenicity and in Vivo Toxicity of Combined Particulate and Semivolatile Organic Fractions of Gasoline and Diesel Engine Emissions. Toxicol Sci 70:212–226

    Article  Google Scholar 

  5. Ho J, Winer AM (1998) Effects of fuel type, driving cycle, and emission status on in-use vehicle exhaust reactivity. J Air Waste Manag 48:592–603

    Google Scholar 

  6. Mi HH, Lee WJ, Chen SJ, Lin TC, Wu TL, Hu JC (1998) Effect of the gasoline additives on PAH emission. Chemosphere 36:2031–2041

    Article  Google Scholar 

  7. Seagrave JC, Mauderly J L, Zielinska B, Sagebiel J, Whitney K, Lawson DR, Gurevich M (2000) Comparative toxicity of gasoline and diesel engine emissions. Soc Automotive Eng Tech Pap 2000–01–2214, pp 1–4

  8. Yuan D, Zhou W, Ye SH (1999) Comparison of the mutagenicity of exhaust emissions from motor vehicles using leaded and unleaded gasoline as fuel. Biomed Environ Sci 12:136–143

    Google Scholar 

  9. Koltsakis GC, Stamatelos AM (2000) Thermal response of automotive hydrocarbon adsorber systems. ASME J Eng Gas Turb Power 122:112–118

    Article  Google Scholar 

  10. Sierens R, Rossel E (2000) Variable combustion hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. ASME J Eng Gas Turb Power 122:135–140

    Article  Google Scholar 

  11. Larsen JF, Wallace JS (1997) Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and hythane-fueled engine. ASME J Eng Gas Turb Power 119:218–226

    Article  Google Scholar 

  12. Minoru O, Ohyama Y (1988) High performance engine control system. SAE 881154:1356–1362

    Google Scholar 

  13. Wolfgang B (2004) The Handbook of Environmental Chemistry. Springer-Verlag, Heidelberg

    Google Scholar 

  14. Beck HA, Niessner R, Haisch C (2003) Analytical and Bioanalytical Chemistry. Springer-Verlag, Heidelberg

    Google Scholar 

  15. Chen DS, Oh SH, Bisset EJ, Van Ostrom DL (1988) A three-dimensional model for the analysis of transient thermal and conversion characteristics of monolithic catalytic converters. SAE 880282:531–338

    Google Scholar 

  16. Bella G, Rocco V, Maggiore MA (1991) Study of inlet flow distortion effects on automotive catalytic converters. ASME J Eng Gas Turb Power 113:419–426

    Article  Google Scholar 

  17. ISO (1991) Measurement of fluid flow by means of pressure differential devices. ISO International Standards Organization 5167

  18. DIN 1952 (1982) Durchflussmessung mit Blenden. Düsen and Venturirohren in voll durchströmten Rohren mit Kreisquerschnitt

  19. Raymond GB (1993) New orifice meter standers improve gas calculations. Oil Gas J 11:40–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Shannak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shannak, B., Damseh, R. & Alhusein, M. Influence of air intake pipe on engine exhaust emission. Forsch Ingenieurwes 70, 128–132 (2005). https://doi.org/10.1007/s10010-006-0022-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-006-0022-8

Keywords

Navigation