Skip to main content
Log in

Label-free PSA electrochemical determination by seed-mediated electrochemically-deposited gold nanoparticles on an FTO electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A facile and sensitive approach is introduced to precisely determine trace amounts of prostate specific antigen (PSA) by gold nanostructures deposited on fluorine-doped tin oxide (FTO) electrodes. The gold electrode fabrication is carried out by integration of two techniques of vacuum-deposition and electrochemical growth. The electrode was successfully used as a label-free immunosensor for PSA determination in human serum samples. The dependency of the biosensor performance on various fabrication parameters have been investigated and the optimized fabrication rout has been specified. This label-free immunosensor presents a noticeable performance with a large range of linearity from 0.05 to 30 ng/mL, a low detection limit of 5.7 pg/mL, and a long-term stability of 4 weeks. The obtained results for PSA determination in real samples show a good agreement with ELISA results with less than 10% deviation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cochetti G, Poli G, Guelfi G, Boni A, Egidi MG, Mearini E (2016) Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: evaluation of potential diagnostic and prognostic role. Onco Targets Ther 9:7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sankara VSPK, Jayanthi A, Das AB, Saxena U (2017) Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 91:15–23

    Article  Google Scholar 

  3. Han J, Li Y, Zhan L, Xue J, Sun J, Xiong C, Nie Z (2018) A novel mass spectrometry method based on competitive non-covalent interaction for the detection of biomarkers. Chem Commun 54(76):10726–10729

    Article  CAS  Google Scholar 

  4. Hu S, Zhang S, Hu Z, Xing Z, Zhang X (2007) Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies. Anal Chem 79(3):923–929

    Article  CAS  Google Scholar 

  5. Huang Z, Lin Q, Ye X, Yang B, Zhang R, Chen H, Weng W, Kong J (2020) Terminal deoxynucleotidyl transferase based signal amplification for enzyme-linked aptamer-sorbent assay of colorectal cancer exosomes. Talanta 218:121089

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19(9):856

    Article  CAS  PubMed  Google Scholar 

  7. Chung Y-C, Lin C-F (2019) Enhancement of microcantilever beams fabrication and determination of their mechanical properties using nanoindentation. Micro & Nano Letters 14(7):788–793

    Article  CAS  Google Scholar 

  8. Upadhyaya AM, Srivastava MC, Sharan P (2020) Integrated MOEMS based cantilever sensor for early detection of cancer. Optik 165321

  9. Zhao J, Wang L, Fu D, Zhao D, Wang Y, Yuan Q, Zhu Y, Yang J, Yang F (2021) Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens Actuators A: Phys 112563

  10. Su L, Zou L, Fong C-C, Wong W-L, Wei F, Wong K-Y, Wu RSS, Yang M (2013) Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens Bioelectron 46:155–161

    Article  CAS  PubMed  Google Scholar 

  11. Fang Q, Lin Z, Lu F, Chen Y, Huang X, Gao W (2019) A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator. Electrochim Acta 302:207–215

    Article  CAS  Google Scholar 

  12. Tian C, Wang L, Luan F, Zhuang X (2019) An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta 191:103–108

    Article  CAS  PubMed  Google Scholar 

  13. Yang C-T, Xu Y, Pourhassan-Moghaddam M, Tran DP, Wu L, Zhou X, Thierry B (2019) Surface plasmon enhanced light scattering biosensing: size dependence on the gold nanoparticle tag. Sensors 19(2):323

    Article  PubMed Central  Google Scholar 

  14. Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84(14):5898–5904

    Article  CAS  PubMed  Google Scholar 

  15. Choi J-H, Lee J-H, Son J, Choi J-W (2020) Noble metal-assisted surface plasmon resonance immunosensors. Sensors 20(4):1003

    Article  CAS  PubMed Central  Google Scholar 

  16. Zeni L, Perri C, Cennamo N, Arcadio F, D’Agostino G, Salmona M, Beeg M, Gobbi M (2020) A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci Rep 10(1):11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu D-D, Deng Y-L, Li C-Y, Lin Y, Tang H-W (2017) Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: a sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosens Bioelectron 87:881–887

    Article  CAS  PubMed  Google Scholar 

  18. Kaya T, Kaneko T, Kojima S, Nakamura Y, Ide Y, Ishida K, Suda Y, Yamashita K (2015) High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence spectroscopy using a plastic sensor chip: application to quantitative analysis of total prostate-specific antigen and GalNAcβ1–4GlcNAc-linked prostate-specific antigen for prostate cancer diagnosis. Anal Chem 87(3):1797–1803

    Article  CAS  PubMed  Google Scholar 

  19. Chang H, Kang H, Ko E, Jun B-H, Lee H-Y, Lee Y-S, Jeong DH (2016) PSA detection with femtomolar sensitivity and a broad dynamic range using SERS nanoprobes and an area-scanning method. ACS Sensors 1(6):645–649

    Article  CAS  Google Scholar 

  20. Grubisha DS, Lipert RJ, Park H-Y, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75(21):5936–5943

    Article  CAS  PubMed  Google Scholar 

  21. You P-Y, Li F-C, Liu M-H, Chan Y-H (2019) Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood. ACS Appl Mater Interfaces 11(10):9841–9849

    Article  CAS  PubMed  Google Scholar 

  22. Argoubi W, Sánchez A, Parrado C, Raouafi N, Villalonga R (2018) Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sens Actuators, B Chem 255:309–315

    Article  CAS  Google Scholar 

  23. Morallon E, Cazorla-Amoros D, Berenguer-Murcia Á, Quintero-Jaime AF (2019) Carbon nanotubes modified with Au for electrochemical detection of prostate specific antigen: effect of Au nanoparticle size distribution. Front Chem 7:147

    Article  PubMed  PubMed Central  Google Scholar 

  24. Suresh L, Brahman PK, Reddy KR, Bondili J (2018) Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzyme Microb Technol 112:43–51

    Article  CAS  PubMed  Google Scholar 

  25. Han L, Liu C-M, Dong S-L, Du C-X, Zhang X-Y, Li L-H, Wei Y (2017) Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosens Bioelectron 87:466–472

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Yuan P-X, Wang A-J, Luo X, Xue Y, Zhang L, Feng J-J (2019) A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron 126:187–192

    Article  CAS  PubMed  Google Scholar 

  27. Tian J, Huang J, Zhao Y, Zhao S (2012) Electrochemical immunosensor for prostate-specific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starch-functionalized multi-walled carbon nanotubes. Microchim Acta 178(1–2):81–88

    Article  CAS  Google Scholar 

  28. Kavosi B, Salimi A, Hallaj R, Amani K (2014) A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite. Biosens Bioelectron 52:20–28

    Article  CAS  PubMed  Google Scholar 

  29. Dave K, Pachauri N, Dinda A, Solanki PR (2019) RGO modified mediator free paper for electrochemical biosensing platform. Appl Surf Sci 463:587–595

    Article  CAS  Google Scholar 

  30. Elancheziyan M, Senthilkumar S (2019) Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl Surface Sci 495:143540

    Article  CAS  Google Scholar 

  31. Fernandes E, Cabral PD, Campos R, Machado G, Cerqueira MF, Sousa C, Freitas PP, Borme J, Petrovykh DY, Alpuim P (2019) Functionalization of single-layer graphene for immunoassays. Appl Surf Sci 480:709–716

    Article  CAS  Google Scholar 

  32. Gajos K, Szafraniec K, Petrou P, Budkowski A (2020) Surface density dependent orientation and immunological recognition of antibody on silicon: TOF-SIMS and surface analysis of two covalent immobilization methods. Appl Surface Sci 518:146269

    Article  CAS  Google Scholar 

  33. Graça JS, Miyazaki CM, Shimizu FM, Volpati D, Mejía-Salazar JR, Oliveira ON Jr, Ferreira M (2018) On the importance of controlling film architecture in detecting prostate specific antigen. Appl Surf Sci 434:1175–1182

    Article  Google Scholar 

  34. Karami P, Bagheri H, Johari-Ahar M, Khoshsafar H, Arduini F, Afkhami A (2019) Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta 202:111–122

    Article  CAS  PubMed  Google Scholar 

  35. Khoshfetrat SM, Khoshsafar H, Afkhami A, Mehrgardi MA, Bagheri H (2019) Enhanced visual wireless electrochemiluminescence immunosensing of prostate-specific antigen based on the luminol loaded into MIL-53 (Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal Chem 91(9):6383–6390

    Article  CAS  PubMed  Google Scholar 

  36. Najari S, Bagheri H, Monsef-Khoshhesab Z, Hajian A, Afkhami A (2018) Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug. Ionics 24(10):3209–3219

    Article  CAS  Google Scholar 

  37. Shi L, Wang Z, Yang G, Yang H, Zhao F (2020) A novel electrochemical immunosensor for aflatoxin B1 based on Au nanoparticles-poly 4-aminobenzoic acid supported graphene. Appl Surface Sci 527:146934

    Article  CAS  Google Scholar 

  38. Tian X, Cao P, Sun D, Wang Z, Ding M, Yang X, Li Y, Ouyang R, Miao Y (2020) Synthesis of CeBi0.4O3.7 nanofeather for ultrasensitive sandwich-like immunoassay of carcinoembryonic antigen. Appl Surface Sc 528:146956

    Article  CAS  Google Scholar 

  39. Martínez-Rojas F, Castañeda E, F.J.J.o.E.C. Armijo, (2021) Conducting polymer applied in a label-free electrochemical immunosensor for the detection prostate-specific antigen using its redox response as an analytical signal. J Electroanalytic Chem 880:114877

    Article  Google Scholar 

  40. Duran B, Castañeda E, Armijo FJB (2019) Development of an electrochemical impedimetric immunosensor for corticotropin releasing hormone (CRH) using half-antibody fragments as elements of biorecognition. Biosens Bioelectron 131:171–177

    Article  CAS  PubMed  Google Scholar 

  41. Ballarin B, Cassani MC, Scavetta E, Tonelli D (2008) Self-assembled gold nanoparticles modified ITO electrodes: the monolayer binder molecule effect. Electrochim Acta 53(27):8034–8044

    Article  CAS  Google Scholar 

  42. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  43. Hossain MZ, Shimizu N (2019) Covalent immobilization of gold nanoparticles on graphene. J Phys Chem C 123(6):3512–3516

    Article  CAS  Google Scholar 

  44. Zhang J, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540(2):299–306

    Article  CAS  Google Scholar 

  45. Kambayashi M, Zhang J, M.J.C.g. Oyama, design, (2005) Crystal growth of gold nanoparticles on indium tin oxides in the absence and presence of 3-mercaptopropyl-trimethoxysilane. Crystal growth 5(1):81–84

    Article  CAS  Google Scholar 

  46. Praig VG, Piret G, Manesse M, Castel X, Boukherroub R, Szunerits S (2008) Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films. Electrochim Acta 53(27):7838–7844

    Article  CAS  Google Scholar 

  47. Kumar D, Mutreja I, Sykes P (2016) Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone. Nanotechnology 27(35):35560

    Article  Google Scholar 

  48. Luong NT-Q, Cao DT, Anh CT, Minh KN, Hai NN (2019) Electrochemical synthesis of flower-like gold nanoparticles for SERS application. J Electron Mater 48:5328–5332

    Article  CAS  Google Scholar 

  49. Das AK, Raj CR (2014) Shape-controlled growth of surface-confined Au nanostructures for electroanalytical applications. J Electroanal Chem 717:140–146

    Article  Google Scholar 

  50. Siampour H, Abbasian S, Moshaii A, Omidfar K, Sedghi M, Naderi-Manesh H (2020) Seed-mediated electrochemically developed Au nanostructures with boosted sensing properties: an implication for non-enzymatic glucose detection. Sci Rep 10(1):1–11

    Article  Google Scholar 

  51. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA: A Cancer J Clinic 66(1):7–30

    Google Scholar 

  52. Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8(4):268–278

    Article  CAS  PubMed  Google Scholar 

  53. Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, Rudd PM, Aleixandre RN, Comet J, de Llorens R (2016) Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics 6(8):1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang J, Kambayashi M, Oyama M (2004) A novel electrode surface fabricated by directly attaching gold nanospheres and nanorods onto indium tin oxide substrate with a seed mediated growth process. Electrochem Commun 6(7):683–688

    Article  CAS  Google Scholar 

  55. Singh M, Kaur N, Comini E (2020) The role of self-assembled monolayers in electronic devices. J Mater Chem C 8(12):3938–3955

    Article  CAS  Google Scholar 

  56. Seenivasan R, Singh CK, Warrick JW, Ahmad N, Gunasekaran S (2017) Microfluidic-integrated patterned ITO immunosensor for rapid detection of prostate-specific membrane antigen biomarker in prostate cancer. Biosens Bioelectron 95:160–167

    Article  CAS  PubMed  Google Scholar 

  57. Joo B-H, Yoon S-Y, Y.-M.J.J.o.n. Sung, (2013) Effect of annealing temperature on electrochemical luminescence properties of nanoporous fluorine-doped tin oxide films. J Nanosci Nanotechnol 13(4):2981–2985

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Shi G (2005) Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J Phys Chem B 109(50):23787–23793

    Article  CAS  PubMed  Google Scholar 

  59. Torati SR, Kasturi KC, Lim B, Kim CJS, Chemical AB (2017) Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125. Sensors and Actuators B 243:64–71

    Article  CAS  Google Scholar 

  60. Jang HD, Kim SK, Chang H, Choi J-W (2015) 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron 63:546–551

    Article  CAS  PubMed  Google Scholar 

  61. Wang R, Liu W-D, Wang A-J, Xue Y, Wu L, Feng J-J (2018) A new label-free electrochemical immunosensor based on dendritic core-shell AuPd@ Au nanocrystals for highly sensitive detection of prostate specific antigen. Biosens Bioelectron 99:458–463

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported by the research council of Tarbiat Modares University (TMU). A. M., and H. S. thank the TMU support under the grant number IG-39708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Moshaii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16526 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadpour, M., Abbasian, S., Siampour, H. et al. Label-free PSA electrochemical determination by seed-mediated electrochemically-deposited gold nanoparticles on an FTO electrode. J Solid State Electrochem 26, 149–161 (2022). https://doi.org/10.1007/s10008-021-05081-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05081-y

Keywords

Navigation