Skip to main content
Log in

Shape-controlled electrodeposition of silver using chitosan as structure-directing agent on disposable pencil graphite electrodes: low-cost electrocatalysts for the detection of hydrogen peroxide and hydrazine hydrate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A facile synthetic protocol for the electrodeposition of diverse morphologies of silver on disposable pencil graphite electrodes (Ag/PGE) in the presence of chitosan as structure-directing agent (SDA) is reported. The influence of various electrodeposition parameters on the morphology of Ag deposited has been studied and interpreted using electron microscopic techniques. Several impressive morphologies such as hexahedron, leaf and dendrites have been observed for Ag/PGE with respect to change in experimental conditions. Furthermore, the crucial role of chitosan in determining the morphology of Ag/PGE has been elucidated with the help of three-dimensional Scharifker-Hills nucleation and growth model. The electrocatalytic activities of various Ag/PGEs towards the reduction of hydrogen peroxide (HP) and oxidation of hydrazine hydrate (HH) have been studied in detail with the help of diverse electrochemical techniques. In comparison with PGE, the Ag hexahedron- (Ag-Hex/PGE) and Ag dendrite- (Ag-Dend/PGE) modified PGEs exhibited excellent electrocatalytic activity towards HP and HH, respectively. The Ag-Hex/PGE displayed a wide linear range of 0.1–20,000 μM with a limit of detection (LOD, 3σ/m) of 0.06 μM for HP reduction. On the other hand, a linear range of 25–20,000 μM with LOD of 1.8 μM for HH oxidation has been observed for Ag-Dend/PGE. Furthermore, the modified Ag/PGEs revealed remarkable reproducibility and long-term storage stability. The practical applicability of the Ag-Hex/PGE and Ag-Dend/PGE was demonstrated through the electrocatalytic detection of HP in milk and HH in tap water samples with satisfactory recovery results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the first author on reasonable request.

References

  1. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384(3):601–619. https://doi.org/10.1007/s00216-005-0230-3

    Article  CAS  PubMed  Google Scholar 

  2. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:1–10. https://doi.org/10.3389/fchem.2014.00063

    Article  CAS  Google Scholar 

  3. Akanda MR, Sohail M, Aziz MA, Kawde AN (2016) Recent advances in nanomaterial-modified pencil graphite electrodes for electroanalysis. Electroanalysis 28(3):408–424. https://doi.org/10.1002/elan.201500374

    Article  CAS  Google Scholar 

  4. Zhu J, Hu L, Zhao P, Lee LYS, Wong K (2019) Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 120(2):851–918. https://doi.org/10.1021/acs.chemrev.9b00248

    Article  CAS  PubMed  Google Scholar 

  5. Jena BK, Retna Raj C (2007) Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine. J Phys Chem C 111(17):6228–6232. https://doi.org/10.1021/jp0700837

    Article  CAS  Google Scholar 

  6. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem 43(45):6042–6108. https://doi.org/10.1002/anie.200400651

    Article  CAS  Google Scholar 

  7. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36(1):153–166. https://doi.org/10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  8. Zhong CJ, Maye MM (2001) Core-shell assembled nanoparticles as catalysts. Adv Mater 13(19):1507–1511. https://doi.org/10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-%23

    Article  CAS  Google Scholar 

  9. Mohanraj VJ, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573. https://doi.org/10.4314/tjpr.v5i1.14634

    Article  Google Scholar 

  10. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  11. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ealias AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263(3):032019–032034. https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  13. Açıkyıldız M, Gürses A, Korucu ME, Güneş K (2014) Electrocatalysis and the production of nanoparticles. Modern electrochemical methods in nano, surface and corrosion science. InTech. https://doi.org/10.5772/58340

  14. Lee S, Jun BH (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865. https://doi.org/10.3390/ijms20040865

    Article  CAS  PubMed Central  Google Scholar 

  15. Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cell Nanomed B 45(7):1272–1291. https://doi.org/10.1080/21691401.2016.1241792

    Article  CAS  Google Scholar 

  16. Syafiuddin A, Salmiati SMR, Kueh ABH, Hadibarata T, Nur H (2017) A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc 64(7):732–756. https://doi.org/10.1002/jccs.201700067

    Article  CAS  Google Scholar 

  17. Chouhan N (2018) Silver nanoparticles: synthesis, characterization and applications. InTech. https://doi.org/10.5772/intechopen.75611

  18. Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng. https://doi.org/10.1155/2015/682749

  19. Rodríguez-Sánchez L, Blanco MC, López-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104(41):9683–9688. https://doi.org/10.1021/jp001761r

    Article  CAS  Google Scholar 

  20. Starowicz M, Stypuła B, Banaś J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8(2):227–230. https://doi.org/10.1016/j.elecom.2005.11.018

    Article  CAS  Google Scholar 

  21. Nasretdinova GR, Fazleeva RR, Mukhitova RK, Nizameev IR, Kadirov MK, Ziganshina AY, Yanikin VV (2015) Electrochemical synthesis of silver nanoparticles in solution. Electrochem Commun 50:69–72. https://doi.org/10.1016/j.elecom.2014.11.016

    Article  CAS  Google Scholar 

  22. Kuntyi KR, Mertsalo IP, Mazur AS, Zozula GI, Bazylyak LI, Topchak RV (2019) Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polym Sci. 297(5):689–695. https://doi.org/10.1007/s00396-019-04488-4

    Article  CAS  Google Scholar 

  23. Singaravelan R, Alwar SBS (2015) Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl Nanosci 5(8):983–991. https://doi.org/10.1007/s13204-014-0396-0

    Article  CAS  Google Scholar 

  24. Sivasubramanian R, Sangaranarayanan MV (2015) A facile formation of silver dendrites on indium tin oxide surfaces using electrodeposition and amperometric sensing of hydrazine. Sensor Actuat B Chem 213:92–101. https://doi.org/10.1016/j.snb.2015.02.065

    Article  CAS  Google Scholar 

  25. Sivasubramanian R, Sangaranarayanan MV (2013) Electrodeposition of silver nanostructures: from polygons to dendrites. CrystEngComm. 15(11):2052–2056. https://doi.org/10.1039/c3ce26886a

    Article  CAS  Google Scholar 

  26. Liu B, Wang M (2013) Electrodeposition of dendritic silver nanostructures and their application as hydrogen peroxide sensor. Int J Electrochem Sci 8:8572–8578 http://www.electrochemsci.org/papers/vol8/80608572.pdf. Accessed 19 March 2020

  27. Rudnik E, Burzyńska L (2006) Influence of organic additives on morphology and purity of cathodic silver. Arch Metall Mater 51(1):137–144 https://www.infona.pl/resource/bwmeta1.element.baztech-article-BSW3-0024-0020. Accessed 19 March 2020

  28. Roldán MV, Pellegri N, de Sanctis O (2013) Electrochemical method for Ag-PEG nanoparticles synthesis. J Nanoparticles 2013:1–7. https://doi.org/10.1155/2013/524150

    Article  CAS  Google Scholar 

  29. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344(17):2375–2382. https://doi.org/10.1016/j.carres.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  30. Kalaivani R, Maruthupandy M, Muneeswaran T, Beevi AH, Anand M, Ramakritinam CH (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35. https://doi.org/10.1016/j.flm.2018.04.002

    Article  Google Scholar 

  31. Ray C, Dutta S, Roy A, Sahoo R, Pal T (2016) Redox mediated synthesis of hierarchical Bi2O3/MnO2 nanoflowers: a non-enzymatic hydrogen peroxide electrochemical sensor. Dalt Trans 45(11):4780–4790. https://doi.org/10.1039/c6dt00062b

    Article  CAS  Google Scholar 

  32. Kim Y, Park JY, Kim HY, Lee M, Yi J, Choi I (2015) A single nanoparticle-based sensor for hydrogen peroxide (H2O2) via cytochrome c-mediated plasmon resonance energy transfer. Chem Commun 51(84):15370–15373. https://doi.org/10.1039/c5cc05327g

    Article  CAS  Google Scholar 

  33. Maduraiveeran G, Kundu M, Sasidharan M (2018) Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process. J Mater Sci 53(11):8328–8338. https://doi.org/10.1007/s10853-018-2141-7

    Article  CAS  Google Scholar 

  34. Sawangphruk M, Sanguansak Y, Krittayavathananon A, Luanwuthi S, Srimuk P, Nilmaung S, Maensiri S, Meevasana W, Limtrakul J (2014) Silver nanodendrite modified graphene rotating disk electrode for nonenzymatic hydrogen peroxide detection. Carbon 70:287–294. https://doi.org/10.1016/j.carbon.2014.01.010

    Article  CAS  Google Scholar 

  35. Metters JP, Tan F, Kadara RO, Banks CE (2012) Platinum screen printed electrodes for the electroanalytical sensing of hydrazine and hydrogen peroxide. Anal Methods 4(5):1272–1277. https://doi.org/10.1039/c2ay05934g

    Article  CAS  Google Scholar 

  36. Becker RA, Barrows LR, Shank RC (1981) Methylation of liver DNA guanine in hydrazine hepatotoxicity: dose-response and kinetic characteristics of O6-methylguanine and formation and persistence in rats. Carcinogenesis 2(11):1181–1188. https://doi.org/10.1093/carcin/2.11.1181

    Article  CAS  PubMed  Google Scholar 

  37. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58. https://doi.org/10.1039/C1AN15738H

    Article  CAS  PubMed  Google Scholar 

  38. Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, Miyazaki Y, Kobayashi T (2003) Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochem Commun 5(10):892–896. https://doi.org/10.1016/j.elecom.2003.08.015

    Article  CAS  Google Scholar 

  39. Dhara K, Mahapatra DR (2019) Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: a review. J Mater Sci 54(19):12319–12357. https://doi.org/10.1007/s10853-019-03750-y

    Article  CAS  Google Scholar 

  40. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180(1–2):15–32. https://doi.org/10.1007/s00604-012-0904-4

    Article  CAS  Google Scholar 

  41. Org WE, Meng Z, Liu B, Li M (2017) A sensitive hydrazine electrochemical sensor based on Ag-Ni alloy/reduced graphene oxide composite. Int J Electrochem Sci 12:10269–10278. https://doi.org/10.20964/2017.11.15

    Article  CAS  Google Scholar 

  42. Zhou X, Wang Y, Liang Z, Jin H (2018) Electrochemical deposition and nucleation/growth mechanism of Ni–Co–Y2O3 multiple coatings. Materials 11(7):1124–1137. https://doi.org/10.3390/ma11071124

    Article  CAS  PubMed Central  Google Scholar 

  43. Gilani NS, Azizi SN, Ghasemi S (2017) Sensitive amperometric determination of hydrazine using a carbon paste electrode modified with silver-doped zeolite L nanoparticles. Bull Mater Sci 40(1):177–185. https://doi.org/10.1007/s12034-016-1351-3

    Article  CAS  Google Scholar 

  44. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889. https://doi.org/10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  45. Raeissi K, Saatchi A, Golozar MA (2003) Effect of nucleation mode on the morphology and texture of electrodeposited zinc. J Appl Electrochem 33(7):635–642. https://doi.org/10.1023/A:1024914503902

    Article  CAS  Google Scholar 

  46. Hwang BJ, Santhanam R, Lin YL (2001) Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochim Acta 46(18):2843–2853. https://doi.org/10.1016/S0013-4686(01)00495-9

    Article  CAS  Google Scholar 

  47. Wang Y, Northwood DO (2008) An investigation into the nucleation and growth of an electropolymerized polypyrrole coating on a 316L stainless steel surface. Thin Solid Films 516(21):7427–7432. https://doi.org/10.1016/j.tsf.2008.02.049

    Article  CAS  Google Scholar 

  48. Witten TA, Sander IM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19):1400–1403. https://doi.org/10.1103/PhysRevLett.47.1400

    Article  CAS  Google Scholar 

  49. Meakin P (1983) Diffusion-controlled cluster formation in two, three, and four dimensions. Phys Rev A 27(1):604–607. https://doi.org/10.1103/PhysRevA.27.604

    Article  Google Scholar 

  50. Zhong L, Gan S, Fu X, Li F, Han D, Guo L, Niu L (2013) Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor. Electrochim Acta 89:222–228. https://doi.org/10.1016/j.electacta.2012.10.161

    Article  CAS  Google Scholar 

  51. Girija TC, Sangaranarayanan MV (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156(2):705–711. https://doi.org/10.1016/j.jpowsour.2005.05.051

    Article  CAS  Google Scholar 

  52. Chaudhari S, Patil PP (2011) Inhibition of nickel coated mild steel corrosion by electrosynthesized polyaniline coatings. Electrochim Acta 56(8):3049–3059. https://doi.org/10.1016/j.electacta.2010.12.096

    Article  CAS  Google Scholar 

  53. Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112(2):199–204. https://doi.org/10.1039/AN9871200199

    Article  Google Scholar 

  54. Yang X, Bai J, Wang Y, Jiang X, He X (2012) Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst 137(18):4362–4367. https://doi.org/10.1039/c2an35407a

    Article  CAS  PubMed  Google Scholar 

  55. Kurowska E, Brzózka A, Jarosz M, Sulka GD, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim Acta 104:439–447. https://doi.org/10.1016/j.electacta.2013.01.077

    Article  CAS  Google Scholar 

  56. Wang QM, Niu HL, Mao CJ, Song JM, Zhang SY (2014) Facile synthesis of trilaminar core-shell Ag@C@Ag nanospheres and their application for H2O2 detection. Electrochim Acta 127:349–354. https://doi.org/10.1016/j.electacta.2014.02.051

    Article  CAS  Google Scholar 

  57. Shi L, Layani M, Cai X, Zhao H, Shlomo M, Lan M (2018) An inkjet printed Ag electrode fabricated on plastic substrate with a chemical sintering approach for the electrochemical sensing of hydrogen peroxide. Sensor Actuat B Chem 256:938–945. https://doi.org/10.1016/j.snb.2017.10.035

    Article  CAS  Google Scholar 

  58. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination. Electrochim Acta 125:593–600. https://doi.org/10.1016/j.electacta.2014.01.148

    Article  CAS  Google Scholar 

  59. Kim SP, Choi HC (2015) Reusable hydrazine amperometric sensor based on Nafion®-coated TiO2-carbon nanotube modified electrode. Sensor Actuat B-Chem 207:424–429. https://doi.org/10.1016/j.snb.2014.10.029

    Article  CAS  Google Scholar 

  60. Rao D, Sheng Q, Zheng J (2016) Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine. Sensor Actuat B Chem 236:192–200. https://doi.org/10.1016/j.snb.2016.05.160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers and editor for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sangaranarayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preethi, S., Sangaranarayanan, M.V. Shape-controlled electrodeposition of silver using chitosan as structure-directing agent on disposable pencil graphite electrodes: low-cost electrocatalysts for the detection of hydrogen peroxide and hydrazine hydrate. J Solid State Electrochem 24, 2773–2788 (2020). https://doi.org/10.1007/s10008-020-04579-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04579-1

Keywords

Navigation