Skip to main content

Advertisement

Log in

Enhanced energy storage of alkali (Li, Na) titanates by sucrose carbonization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a simple and effective synthesis procedure was performed in order to prepare hybrid alkali titanate materials, as negative electrodes for lithium-ion battery applications. Lithium titanate Li4Ti5O12 (LTO) and sodium titanates Na2Ti3O7 (NTO237) and Na2Ti6O13 (NTO2613) compounds were synthesized through a solid-state method; then a carbon coating was performed using sucrose impregnation followed by a dehydration step with strong acid medium, and finally calcined at high temperature. XRD and Raman spectroscopy analysis of the composites indicated that the strong acid medium in the carbonization step affects the titanate structure. A calcination temperature at 700 °C proved to be adequate to obtain the LTO/C material without significant changes and with a homogeneous carbon coating, so it was used to obtain further the hybrids NTO237/C and NTO2613/C materials. The carbon coating improved the good behavior obtained before in bare LTO compound about specific capacity for electric charge storage, but mainly produced huge improvements in the poor specific capacities observed for both bare NTO compounds. All the hybrid alkali titanates exhibited a great stability of charge/discharge cycling and a very good rate capability response, showing a robust behavior recovering the initial specific capacity at low rate after several discharge cycles at high rates (10 C). Such increase in the specific storage capacity in all hybrid alkali titanate materials is associated with the enhancement in the inter-particle connectivity generated by the carbonaceous coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB, Park K (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  PubMed  Google Scholar 

  2. Robledo CB, Otero M, Luque G, Cámara O, Barraco D, Rojas MI, Leiva EPM (2014) First-principles studies of lithium storage in reduced graphite oxide. Electrochim Acta 140:232–237

    CAS  Google Scholar 

  3. Robledo CB, Thomas JE, Luque G, Leiva EPM, Cámara O, Barraco D, Visintin A (2014) An experimental and theoretical approach on the effect of presence of oxygen in milled graphite as lithium storage material. Electrochim Acta 140:160–167

    CAS  Google Scholar 

  4. Li S, Liu L, Tian D, Zhao H (2011) Synthesis and electrical properties of Na2Ti3O7 nanoribbons. Micro Nano Lett 6:233

    CAS  Google Scholar 

  5. Dynarowska M, Kotwi J, Leszczynska M, Marzantowicz M, Krok F (2017) Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ionics 301:35–42

    CAS  Google Scholar 

  6. Li P, Wang P, Qian S, Yu H, Lin X, Shui M, Zheng X, Long N, Shu J (2016) Synthesis of Na2Ti6O13 nanorods as possible anode materials for rechargeable lithium ion batteries. Electrochim. Acta 187:46–54

    CAS  Google Scholar 

  7. Chauque S, Oliva FY, Visintin A, Barraco D, Leiva EPM, Cámara OR (2017) Lithium titanate as anode material for lithium ion batteries: synthesis, post-treatment and its electrochemical response. J Electroanal Chem 799:142–155

    CAS  Google Scholar 

  8. Chauque S, Robledo CB, Leiva EPM, Oliva FY, Camara OR (2014) Comparative study of different alkali (Na, Li) titanate substrates as active materials for anodes of lithium - ion batteries. ECS Trans 63:113–128

    CAS  Google Scholar 

  9. Sandhya CP, John B, Gouri C (2014) Lithium titanate as anode material for lithium-ion cells: a review. Ionics (Kiel) 20:601–620

    CAS  Google Scholar 

  10. Kim J, Eun K, Hwan K, Wi S, Lee S, Nam S, Kim C, Ouk S, Park B (2017) Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon 114:275–283

    CAS  Google Scholar 

  11. Han X, Zhao Z, Xu Y, Liu D, Zhang H, Zhao C (2014) Synthesis and characterization of F-doped. RSC Adv 4:41968–41975

    CAS  Google Scholar 

  12. Chang C, Chen Y, Ma W, Chen-yang YW (2015) High rate capabilities of Li4Ti5-xVxO12 (0 ≤ x ≤ 0.3) anode materials prepared by a sol–gel method for use in power lithium ion batteries. RSC Adv 5:49248–49256

    CAS  Google Scholar 

  13. Wei G, Rambo CR, Guo Y, Ning Z, Guo S, Zhao M, Huang Z, Zhang C, He D (2017) Graphene coated La3+/Sc3+ co-doped Li4Ti5O12 anodes for enhanced Li-ion battery performance. Mater Lett 193:179–182

    CAS  Google Scholar 

  14. Yi T-F, Liu H, Zhu Y-R, Jiang L-J, Xie Y, Zhu R-S (2012) Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution. J Power Sources 215:258–265

    CAS  Google Scholar 

  15. Cho H, Son H, Kim D, Lee M, Boateng S, Han HS, Kim KM, Kim S, Choi H, Song T, Lee KH (2017) Impact of Mg-doping site control in the performance of Li4Ti5O12 Li-ion battery anode: first-principles predictions and experimental verifications. J Phys Chem C 121:14994–15001

    CAS  Google Scholar 

  16. Zhang Q, Liu Y, Lu H, Tang D, Ouyang C, Zhang L (2016) Ce3+-doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries. Electrochim Acta 189:147–157

    CAS  Google Scholar 

  17. Xu GB, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J Power Sources 295:305–313

    CAS  Google Scholar 

  18. Liu J, Wei X, Liu X (2015) Two-dimensional wavelike spinel lithium titanate for fast lithium storage. Sci Rep 5:1–6

    Google Scholar 

  19. Nugroho A, Kim SJ, Chung KY, Cho B-W, Lee Y-W, Kim J (2011) Facile synthesis of nanosized Li4Ti5O12 in supercritical water. Electrochem Commun 13:650–653

    CAS  Google Scholar 

  20. Yu SH, Pucci A, Herntrich T, Willinger MG, Baek SH, Sung YE, Pinna N (2011) Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J Mater Chem 21:806–810

    CAS  Google Scholar 

  21. Tsiamtsouri MA, Allan PK, Pell AJ, Stratford JM, Kim G, Kerber RN, Magusin PCMM, Jefferson DA, Grey CP (2018) Exfoliation of layered Na-ion anode material Na2Ti3O7 for enhanced capacity and cyclability. Chem Mater 30:1505–1516

    CAS  Google Scholar 

  22. Muñoz-Márquez MA, Zarrabeitia M, Castillo-Martínez E, Eguía-Barrio A, Rojo T, Casas-Cabanas M (2015) Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis. ACS Appl Mater Interfaces 7(14):7801–7808

    PubMed  Google Scholar 

  23. Xie F, Zhang L, Su D, Jaroniec M, Qiao SZ (2017) Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv Mater 29:1700989–1700995

    Google Scholar 

  24. Xie F, Zhang L, Ye C, Jaroniec M, Qiao S-Z (2018) The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv Mater. https://doi.org/10.1002/adma.201800492

  25. Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett 16(7):4544–4551

    CAS  PubMed  Google Scholar 

  26. Zou W, Fan C, Li J (2017) Sodium titanate/carbon (Na2Ti3O7/C) nanofibers via electrospinning technique as the anode of sodium-ion batteries. Chinese J Chem 35:79–85

    CAS  Google Scholar 

  27. Leite MM, Martins VL, Vichi FM, Torresi RM (2019) Electrochemistry of sodium titanate nanotubes as a negative electrode for sodium-ion batteries. Electrochim Acta 331:135422. https://doi.org/10.1016/j.electacta.2019.135422

    Article  CAS  Google Scholar 

  28. Wu C, Hua W, Zhang Z, Zhong B, Yang Z, Feng G, Xiang W, Wu Z, Guo X (2018) Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries. Adv Sci 5(9):1800519

  29. Wu C, Wu Z-G, Zhang X, Rajagopalan R, Zhong B, Xiang W, Chen M, Li H, Chen T, Wang E, Yang Z, Guo X (2017) Insight into the origin of capacity fluctuation of Na2Ti6O13 anode in sodium ion batteries. ACS Appl Mater Interfaces 9(50):43596–43602

    CAS  PubMed  Google Scholar 

  30. Du X, Yao H, Ma M, Feng T, Zhang B, Xu Y, Ma C, Wang J, Huang Y (2017) Green ball dianthus-like Na2Ti6O13as high-rate performance anode for sodium-ion batteries. J Alloys Compd 721:100–105

    CAS  Google Scholar 

  31. Zhu H, Yang K, Lan H, Qian S, Yu H, Yan L, Long N, Shui M, Shu J (2017) Electrochemical kinetics of Na2Ti3O7 as anode material for lithium-ion batteries. J Electroanal Chem 788:203–209

    CAS  Google Scholar 

  32. Dominko R, Baudrin E, Umek P, Arčon D, Gaberšček M, Jamnik J (2006) Reversible lithium insertion into Na2Ti6O13 structure. Electrochem Commun 8:673–677

    CAS  Google Scholar 

  33. Yoon S, Kim H, Roh C, Kim K (2015) Electrochemical kinetics investigation of Li4Ti5O12/reduced graphene oxide nanocomposite using voltammetric charge. J Electrochem Soc 162:A667–A673

    CAS  Google Scholar 

  34. Lan C, Bao Q, Huang Y, Duh J (2016) Embedding nano-Li4Ti5O12 in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials. J Alloys Compd 673:336–348

    CAS  Google Scholar 

  35. Liu H, Wen G, Bi S, Wang C, Hao J, Gao P (2016) High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries. Electrochim Acta 192:38–44

    CAS  Google Scholar 

  36. Chem JM (2012) Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application. J Mater Chem 22:11257–11260

    Google Scholar 

  37. Mu D, Chen Y, Wu B, Huang R, Jiang Y, Li L (2016) Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries. J Alloys Compd 671:157–163

    CAS  Google Scholar 

  38. Ding Y, Li GR, Xiao CW, Gao XP (2013) Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries. Electrochim Acta 102:282–289

    CAS  Google Scholar 

  39. Li X, Qu M, Huai M, Yu Z (2010) Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55:2978–2982

    CAS  Google Scholar 

  40. Huang J, Jiang Z (2008) The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim Acta 53:7756–7759

    CAS  Google Scholar 

  41. Liu W, Wang Y, Jia X, Xia B (2013) The characterization of lithium titanate microspheres synthesized by a hydrothermal method. J Chem 2013:1–9

  42. Sandhya CP, John B, Gouri C (2013) Synthesis and electrochemical characterisation of electrospun lithium titanate ultrafine fibres. J Mater Sci 48:5827–5832

    CAS  Google Scholar 

  43. Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519

    CAS  Google Scholar 

  44. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chemie - Int Ed 48:7752–7777

    CAS  Google Scholar 

  45. Tuinstra F, Koenig JL (1969) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Google Scholar 

  46. Jian Z, Xing Z, Bommier C, Li Z, Ji X (2016) Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater 6:1–5

    Google Scholar 

  47. Gao L, Li X, Hu H, Li G, Liu H, Yu Y (2014) TiO2 mesoporous microspheres with nanorod structure: facile synthesis and superior electrochemical performance. Electrochim Acta 120:231–239

    CAS  Google Scholar 

  48. Kavan L (2014) Lithium insertion into TiO2 (anatase): electrochemistry, Raman spectroscopy, and isotope labeling. J Solid State Electrochem 2:2297–2306

    Google Scholar 

  49. Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047

    CAS  Google Scholar 

  50. Peukert W (1897) Über die Abhänigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotechnische Zeitschrift 27:287–288

    Google Scholar 

  51. Omar N, Van den Bossche P, Coosemans T, Van Mierlo J (2013) Peukert revisited-critical appraisal and need for modification for lithium-ion batteries. Energies 6:5625–5641

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Cecilia Blanco for her contribution in the analysis of the DRX patterns and language assistance from Javier H. Marín is also acknowledged. This work was performed at INFIQC-CONICET and Facultad de Ciencias Químicas-Universidad Nacional de Córdoba, Argentina.

Funding

This work was supported by PIO 2015-0046 (CONICET-Fundación YPF 3855/15) PID 2011-0070, Program BID (PICT-2011-0754, 2012-2324), Program BID-Foncyt (PICT-2015-1605), SeCyT of the Universidad Nacional de Córdoba (103/15), and YPF-Tecnología (Y-TEC) (2013/2015 and 2015/2016), Argentina. Susana Chauque wishes to thank CONICET for the doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. Cámara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauque, S., Oliva, F.Y., Lener, G. et al. Enhanced energy storage of alkali (Li, Na) titanates by sucrose carbonization. J Solid State Electrochem 24, 1017–1032 (2020). https://doi.org/10.1007/s10008-020-04567-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04567-5

Keywords

Navigation