Skip to main content
Log in

Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium manganese spinel (LiMn2O4) is considered a promising cathode material for lithium-ion batteries (LIBs). Its structure, morphology, and electrochemical performances are strongly connected to the precursors, synthesis route, and heat treatment; hence, by optimizing the synthesis procedure, improved materials can be obtained. Recently investigated routes focus on the synthesis of enhanced LiMn2O4 spinel, with uniform morphology, high crystallinity, which can deliver large discharge capacity at high rates for a longer period of time. Also, the synthesis procedure must be easily applicable on industrial scale, not just for pilot and laboratory investigations. In the current study, main synthesis procedures (solid-state reactions, sol-gel, hydrothermal reactions, combustion method plus several newly employed methods) used for obtaining lithium manganese oxide, along with its electrochemical effectiveness, are described. Among the considered synthesis methods, some of the best electrochemical performances are recorded for lithium manganese oxide obtained by sol-gel process and hydrothermal method. Even though solid-state reaction method is a simple and has few stages, particle crystallinity and size are more difficult to control, while sol-gel and hydrothermal method provides more evenly sized particles. Also, the latter two syntheses do not need very high calcination temperatures like in the samples obtained by solid-state reactions method. Lithium manganese spinel with uniform spherical and octahedral particles delivered the highest initial discharge capacities and has the ability to retain most of the capacity during the charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Zhao H, Liu S, Cai Y, Wang Z, Tan M, Liu X (2016) J Alloys Compd 671:304–311

    CAS  Google Scholar 

  2. Wang JG, Jin DD, Liu HY, Zhang CB, Zhou R, Shen C, Xie KY, Wei BQ (2016) Nano Energy 22:524–532

    CAS  Google Scholar 

  3. Thirunakaran R, Kim T, Yoon W-S (2016) Particuology 24:87–95

    CAS  Google Scholar 

  4. Ordoñez J, Gago EJ, Girard A (2016) Renew Sust Energ Rev 60:195–205

    Google Scholar 

  5. Scrosati B (2000) Electrochim Acta 45:2461–2466

    CAS  Google Scholar 

  6. Pampal ES, Stojanovska E, Simon B, Kilic A (2015) J Power Sources 300:199–215

    CAS  Google Scholar 

  7. Xu X, Lee S, Jeong S, Kim Y, Cho J (2013) Mater Today 16:487–495

    CAS  Google Scholar 

  8. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:785–789

    Google Scholar 

  9. Zhang W-J (2011) J Power Sources 196:2962–2970

    CAS  Google Scholar 

  10. Mohan Rao M, Liebenow C, Jayalakshmi M, Wulff H, Guth U, Scholz F (2001) J Solid State Electrochem 5:348–354

    Google Scholar 

  11. Zhu Q, Zheng S, Lu X, Wan Y, Chen Q, Yang J, Zhang L-z, Lu Z (2016) J Alloys Compd 654:384–391

    CAS  Google Scholar 

  12. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872–3883

    CAS  Google Scholar 

  13. Chen J-M, Cho Y-D, Hsiao C-L, Fey GT-K (2009) J Power Sources 189:279–287

    CAS  Google Scholar 

  14. Dai X, Zhou A, Xu J, Lu Y, Wang L, Fan C, Li J (2016) J Phys Chem C 120:422–430

    CAS  Google Scholar 

  15. Nayaka GP, Pai KV, Manjanna J, Keny SJ (2016) Waste Manag 51:234–238

    CAS  PubMed  Google Scholar 

  16. Cho J, Jung H, Park Y, Kim G, Sup Lim H (2000) J Electrochem Soc 147:15–20

    CAS  Google Scholar 

  17. Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18:252–264

    CAS  Google Scholar 

  18. Li Z, Zhang D, Yang F (2009) J Mater Sci 44:2435–2443

    CAS  Google Scholar 

  19. Liu GY, Guo JM, Zhang LL, Wang BS, He Y (2012) Appl Mech Mater 142:205–208

    CAS  Google Scholar 

  20. Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) J Solid State Electrochem 8:450–466

    CAS  Google Scholar 

  21. Thirunakaran R, Lew GH, Yoon W-S (2016) J Electroanal Chem 767:141–152

    CAS  Google Scholar 

  22. Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill CW, Gregory DH (2008) Mater Res Bull 43:2119–2129

    CAS  Google Scholar 

  23. Kiani MA, Mousavi MF, Rahmanifar MS (2011) Int J Electrochem Sci 6:2581–2595

    CAS  Google Scholar 

  24. Waller GH, Brooke PD, Rainwater BH, Lai SY, Hu R, Ding Y, Alamgir FM, Sandhage KH, Liu ML (2016) J Power Sources 306:162–170

    CAS  Google Scholar 

  25. Karaal Ş, Köse H, Aydin AO, Akbulut H (2015) Mater Sci Semicond Process 38:397–403

    CAS  Google Scholar 

  26. Liu J, Li G, Yu Y, Bai H, Shao M, Guo J, Su C, Liu X, Bai W (2017) J Alloys Compd 728:1315–1328

    CAS  Google Scholar 

  27. Ouyang CY, Shi SQ, Lei MS (2009) J Alloys Compd 474:370–374

    CAS  Google Scholar 

  28. Li X, Xu Y, Wang C (2009) J Alloys Compd 479:310–313

    CAS  Google Scholar 

  29. Wang X, Nakamura H, Yoshio M (2000) J Power Sources 110:19–26

    Google Scholar 

  30. Arumugam D, Paruthimal Kalaignan G (2008) J Electroanal Chem 624:197–204

    CAS  Google Scholar 

  31. Tao S, Zhao H, Wu C, Xie H, Cui P, Xiang T, Chen S, Zhang L, Fang Y, Wang Z, Chu W, Qian B, Song L (2017) Mater Chem Phys 199:203–208

    CAS  Google Scholar 

  32. Park K, Park J-H, Hong S-G, Yoon J, Park S, Kim J-H, Yoon D, Kim H, Son Y-H, Park J-H, Kwon S (2016) Electrochim Acta 222:830–837

    CAS  Google Scholar 

  33. Shi T, Dong Y, Wang C-M, Tao F, Chen L (2015) J Power Sources 273:959–965

    CAS  Google Scholar 

  34. Ram P, Gören A, Ferdov S, Silva MM, Choudhary G, Singhal R, Costa CM, Sharma RK, Lanceros-Méndez S (2017) Solid State Ionics 300:18–25

    CAS  Google Scholar 

  35. Xuewu L, Xiaojuan W, Shuhua C, Jie T (2016) Mater Today Proc 3:672–680

    Google Scholar 

  36. Zhou D, Liu S, Wang H, Yan G (2013) J Power Sources 227:111–117

    CAS  Google Scholar 

  37. Chae C, Park H, Kim D, Kim J, Oh E-S, Lee JK (2013) J Power Sources 244:214–221

    CAS  Google Scholar 

  38. Zhao Y, Choe S-Y (2015) Electrochim Acta 164:97–107

    CAS  Google Scholar 

  39. Dai Y, Cai L, White RE (2012) J Electrochem Soc 160:A182–A190

    Google Scholar 

  40. Ando K, Matsuda T, Myojin M, Imamura D (2017) ECS Trans 75:77–90

    CAS  Google Scholar 

  41. Wang J, Yu YY, Li B, Zhang P, Huang JX, Wang F, Zhao SY, Gan CL, Zhao JB (2016) ACS Appl. Mater Interfaces 8:20147–20156

    CAS  PubMed  Google Scholar 

  42. Gotcu P, Seifert HJ (2016) Phys Chem Chem Phys 18:10550–10562

    CAS  PubMed  Google Scholar 

  43. Bazuev GV, Tyutyunnik AP, Berger IF, Nikolaenko IV, Golovkin BG (2011) J Alloys Compd 509:6158–6162

    CAS  Google Scholar 

  44. Potapenko AV, Kirillov SA (2014) J Energy Chem 23:543–558

    Google Scholar 

  45. Thackeray MM, Picciotto LA, De Kock A, Johnson PJ, Nicholas VA, Adendorff KT (1987) J Power Sources 21:1–8

    CAS  Google Scholar 

  46. Thackeray MM, Johnson PJ, Picciotto LA, Bruce PG, Goodenough JB (1984) Mater Res Bull 19:179–187

    CAS  Google Scholar 

  47. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461–472

    CAS  Google Scholar 

  48. Angelopoulou P, Paloukis F, Słowik G, Wójcik G, Avgouropoulos G (2017) Chem Eng J 311:191–202

    CAS  Google Scholar 

  49. Han C-G, Zhu C, Saito G, Akiyama T (2015) RSC Adv 5:73315–73322

    CAS  Google Scholar 

  50. Bensalah N, Dawood H (2016) J Mater Sci Eng 5:1000258

    Google Scholar 

  51. Julien C, Mauger A, Zaghib K, Groult H (2014) Inorganics 2:132–154

    CAS  Google Scholar 

  52. Yang G, Wang L, Wang J, Yan W (2016) Mater Lett 177:13–16

    CAS  Google Scholar 

  53. Yang G, Xu X, Yan W, Yang H, Ding S (2014) Electrochim Acta 137:462–469

    CAS  Google Scholar 

  54. Jain A, Ong* SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) APL Materials 1:011002

    Google Scholar 

  55. Miyamoto Y, Kuroda Y, Uematsu T, Oshikawa H, Shibata N, Ikuhara Y, Suzuki K, Hibino M, Yamaguchi K, Mizuno N (2015) Sci Rep 5:15011

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu C, Neale ZG, Cao G (2016) Mater Today 19:109–123

    CAS  Google Scholar 

  57. Lu J, Zhou C, Liu Z, Lee KS, Lu L (2016) Electrochim Acta 212:553–560

    CAS  Google Scholar 

  58. Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochem Commun 11:247–249

    CAS  Google Scholar 

  59. He P, Zhang X, Wang Y-G, Cheng L, Xia Y-Y (2008) J Electrochem Soc 155:A144

    CAS  Google Scholar 

  60. Bao S-J, Liang Y-Y, Li H-L (2005) Mater Lett 59:3761–3765

    CAS  Google Scholar 

  61. Xia Y, Yoshio M (1996) J Electrochem Soc 143:825–8233

    CAS  Google Scholar 

  62. Zeng J, Li M, Li X, Chen C, Xiong D, Dong L, Li D, Lushington A, Sun X (2014) Appl Surf Sci 317:884–891

    CAS  Google Scholar 

  63. Liu J, Wu X, Chen S, Liu J, He Z (2013) Bull Mater Sci 36:687–691

    CAS  Google Scholar 

  64. Sahan H (2008) Solid State Ionics 178:1837–1842

    CAS  Google Scholar 

  65. Zhao H, Liu X, Cheng C, Li Q, Zhang Z, Wu Y, Chen B, Xiong W (2015) J Power Sources 282:118–128

    CAS  Google Scholar 

  66. Cui Y, Yuan Z, Bao W, Zhuang Q, Sun Z (2012) J Appl Electrochem 42:883–891

    CAS  Google Scholar 

  67. Alias N, Mohamad AA (2015) J Power Sources 274:237–251

    CAS  Google Scholar 

  68. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    CAS  Google Scholar 

  69. Park SI, Okada S, Yamaki JI (2011) J Novel Carbon Resource Sci 3:27–31

    Google Scholar 

  70. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115–1118

    CAS  PubMed  Google Scholar 

  71. Liu B-S, Wang Z-B, Zhang Y, Yu F-D, Xue Y, Ke K, Li F-F (2015) J Alloys Compd 622:902–907

    CAS  Google Scholar 

  72. Thirunakaran R, Lew GH, Yoon W-S (2016) WJNSE 06:1–19

    CAS  Google Scholar 

  73. Chan HW, Duh JG, Sheen SR (2003) J Power Sources 115:110–118

    CAS  Google Scholar 

  74. Zhao M, Song X, Wang F, Dai W, Lu X (2011) Electrochim Acta 56:5673–5678

    CAS  Google Scholar 

  75. Li X, Xiang R, Su T, Qian Y (2007) Mater Lett 61:3597–3600

    CAS  Google Scholar 

  76. Jiang CH, Dou SX, Liu HK, Ichihara M, Zhou HS (2007) J Power Sources 172:410–415

    CAS  Google Scholar 

  77. Ebin B, Lindbergh G, Gürmen S (2015) J Alloys Compd 620:399–406

    CAS  Google Scholar 

  78. Li W, Zeng L, Wu Y, Yu Y (2016) Sci. China Mater 59:287–321

    CAS  Google Scholar 

  79. Chen S, Chen Z, Cao C (2016) Electrochim Acta 199:51–58

    CAS  Google Scholar 

  80. Chen P, Wu H, Huang S, Zhang Y (2016) Ceram Int 42:10498–10505

    CAS  Google Scholar 

  81. Seyedahmadian M, Houshyarazar S, Amirshaghaghi A (2013) Bull. Korean Chem. Soc. 34:622–628

    CAS  Google Scholar 

  82. Li W, Siqin G-W, Zhu Z, Qi L, Tian W-H (2017) Chin Chem Lett 28:1438–1446

    CAS  Google Scholar 

  83. Wang GG, Wang JM, Mao WQ, Shao HB, Zhang JQ, Cao CN (2004) J Solid State Electrochem 9:524–530

    Google Scholar 

  84. Wei C, Shen J, Zhang J, Zhang H, Zhu C (2014) RSC Adv 4:44525–44528

    CAS  Google Scholar 

  85. Kopp Alves A, Bergmann CP, Berutti FA (2013) Novel synthesis and characterization of nanostructured materials. Springer, Berlin

    Google Scholar 

  86. Suvaci E, Adair HR (2001) In: Buschow KHJ, Cahn R, Flemings M, Ilschner B, Kramer E, Mahajan S, Veyssiere P (eds) Encyclopedia of materials science and technology, 2nd edn. New York, Elsevier

    Google Scholar 

  87. Shandilya M, Rai R, Singh J (2016) Adv Appl Ceram 115:354–376

    CAS  Google Scholar 

  88. Wan C, Wu M, Wu D (2010) Powder Technol 199:154–158

    CAS  Google Scholar 

  89. Feng X, Zhang J, Yin L (2016) Powder Technol 287:77–81

    CAS  Google Scholar 

  90. Feng X, Zhang J, Yin L (2016) Mater Res Bull 74:421–424

    CAS  Google Scholar 

  91. Ahn D, Song M (2000) J Electrochem Soc 147:874–879

    CAS  Google Scholar 

  92. Wang H-E, Qian D, Lu Z-g, Y-k L (2012) J Alloys Compd 517:186–191

    CAS  Google Scholar 

  93. Li B, Wei X, Chang Z, Chen X, Yuan X-Z, Wang H (2014) Mater Lett 135:75–78

    CAS  Google Scholar 

  94. Sin D-Y, Koo B-R, Ahn H-J (2017) J Alloys Compd 696:290–294

    CAS  Google Scholar 

  95. Mao Y, Xiao S, Liu J (2017) Mater. Res. Bull 96(part 4):437–442

    CAS  Google Scholar 

  96. Kozawa T, Yanagisawa K, Murakami T, Naito M (2016) J Solid State Chem 243:241–246

    CAS  Google Scholar 

  97. Luo J, Cheng L, Xia Y (2007) Electrochem Commun 9:1404–1409

    CAS  Google Scholar 

  98. Zhao H, Li F, Liu X, Xiong W, Chen B, Shao H, Que D, Zhang Z, Wu Y (2015) Electrochim. Acta 166:124–133

    CAS  Google Scholar 

  99. Z-h C, K-l H, S-q L, Wang H-y (2010) Trans. Nonferrous met. Soc. China 20:2309–2313

    Google Scholar 

  100. Tron A, Park YD, Mun J (2016) J Power Sources 325:360–364

    CAS  Google Scholar 

  101. Lee S, Cho Y, Song HK, Lee KT, Cho J (2012) Angew Chem Int Ed Eng 51:8748–8752

    CAS  Google Scholar 

  102. Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim do K (2010) Nano Lett 10:3852–3856

    CAS  PubMed  Google Scholar 

  103. Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) Electrochem Commun 13:1159–1162

    CAS  Google Scholar 

  104. Jiang J, Du K, Cao Y, Peng Z, Hu G, Duan J (2013) J Alloys Compd 577:138–142

    CAS  Google Scholar 

  105. Wan C, Cheng M, Wu D (2011) Powder Technol 210:47–51

    CAS  Google Scholar 

  106. Sadeghi B, Sarraf-Mamoory R, Shahverdi HR (2012) J Nanomater 2012:1–7

    Google Scholar 

  107. Zhao M, Zheng Q, Wang F, Dai W, Song X (2011) Electrochim Acta 56:3781–3784

    CAS  Google Scholar 

  108. Yuan G, Bai J, Doan TNL, Chen P (2014) Mater Lett 137:311–314

    CAS  Google Scholar 

  109. Yang Z, Li S, Xia S-A, Jiang Y, Zhang W-X, Huang Y-H (2011) Electrochem. Solid-State Lett 14:A109

    CAS  Google Scholar 

  110. Chen Q, Wang Y, Zhang T, Yin W, Yang J, Wang X (2012) Electrochim. Acta 83:65–72

    CAS  Google Scholar 

  111. Lu J, Zhan C, Wu T, Wen J, Lei Y, Kropf AJ, Wu H, Miller DJ, Elam JW, Sun YK, Qiu X, Amine K (2014) Nat Commun 5:5693

    CAS  PubMed  Google Scholar 

  112. Jiang QL, Du K, Cao YB, Peng ZD, Hu GR, Liu YX (2010) Chin Chem Lett 21:1382–1386

    CAS  Google Scholar 

  113. Sun H, Chen Y, Xu C, Zhu D, Huang L (2012) J Solid State Electrochem 16:1247–1254

    CAS  Google Scholar 

  114. Cho M-Y, Roh K-C, Park S-M, Lee J-W (2011) Mater Lett 65:2011–2014

    CAS  Google Scholar 

  115. Nageswara Rao B, Padmaraj O, Narsimulu D, Venkateswarlu M, Satyanarayana N (2015) Ceram Int 41:14070–14077

    CAS  Google Scholar 

  116. Wu H, J-h L, Y-x C, Y-b S, Q-h Y (2002) J. Wuhan Univ. Technol. 17:21–24

    Google Scholar 

  117. Fu L, Liu H, Li C, Wu Y, Rahm E, Holze R, Wu H (2005) Prog Mater Sci 50:881–928

    CAS  Google Scholar 

  118. Yi T-F, Hu X-G, Dai C-S, Gao K (2007) JMater Sci 42:3825–3830

    CAS  Google Scholar 

  119. Quan Z, Ohguchi S, Kawase M, Tanimura H, Sonoyama N (2013) J Power Sources 244:375–381

    CAS  Google Scholar 

  120. Kebede MA, Phasha MJ, Kunjuzwa N, le Roux LJ, Mkhonto D, Ozoemena KI, Mathe MK (2014) Sustain. Energy Techn 5:44–49

    Google Scholar 

  121. Arumugam D, Paruthimal Kalaignan G (2010) Mater Res Bull 45:1825–1831

    CAS  Google Scholar 

  122. Thirunakaran R, Lew GH, Yoon W-S (2017) J Energy Chem 26:101–114

    Google Scholar 

  123. Thirunakaran R, Lew GH, Yoon W-S (2016) Powder Technol 301:197–210

    CAS  Google Scholar 

  124. Thirunakaran R, Ravikumar R, Gopukumar S, Sivashanmugam A (2013) J Alloys Compd 556:266–273

    CAS  Google Scholar 

  125. Thirunakaran R (2014) J. Sol-Gel Sci. Technol. 69:397–406

    CAS  Google Scholar 

  126. Thirunakaran R, Ravikumar R, Vanitha S, Gopukumar S, Sivashanmugam A (2011) Electrochim. Acta 58:348–358

    CAS  Google Scholar 

  127. Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill CW, Gregory DH (2008) J Phys Chem Solids 69:2082–2090

    CAS  Google Scholar 

  128. Arumugam D, Paruthimal Kalaignan G (2010) J Electroanal Chem 648:54–59

    CAS  Google Scholar 

  129. Arumugam D, Kalaignan GP, Vediappan K, Lee CW (2010) Electrochim. Acta 55:8439–8444

    CAS  Google Scholar 

  130. Thirunakaran R, Sivashanmugam A, Gopukumar S, Rajalakshmi R (2009) J Power Sources 187:565–574

    CAS  Google Scholar 

  131. Xiong LL, Xu YL, Tao T, Goodenough JB (2012) J Power Sources 199:214–219

    CAS  Google Scholar 

  132. Yi T-F, Hao C-L, Yue C-B, Zhu R-S, Shu J (2009) Synth Met 159:1255–1260

    CAS  Google Scholar 

  133. Hwang J-T, Park S-B, Park C-K, Jang H (2011) Bull. Korean Chem. Soc. 32:3952–3958

    CAS  Google Scholar 

  134. Ren X, Wang J, Peng Z, Lu L (2018) Chem Sci 9:231–237

    PubMed  Google Scholar 

  135. Xu G, Liu Z, Zhang C, Cui G, Chen L (2015) J Mater Chem A 3:4092–4123

    CAS  Google Scholar 

  136. Mohan P, Paruthimal Kalaignan G (2014) Ceram Int 40:1415–1421

    CAS  Google Scholar 

  137. Michalska M, Lipińska L, Sikora A, Ziółkowska D, Korona KP, Andrzejczuk M (2015) J Alloys Compd 632:252–262

    Google Scholar 

  138. Zheng C-H, Wu Z-F, Li J-C, Liu X, Fang D-L (2014) Ceram Int 40:8455–8463

    CAS  Google Scholar 

  139. Michalska M, Lipińska L, Mirkowska M, Aksienionek M, Diduszko R, Wasiucionek M (2011) Solid State Ionics 188:160–164

    CAS  Google Scholar 

  140. Li X, Yang R, Cheng B, Hao Q, Xu H, Yang J, Qian Y (2012) Mater Lett 66:168–171

    CAS  Google Scholar 

  141. Yan J, Liu H, Wang Y, Zhao X, Mi Y, Xia B (2014) J Chem Eng Mater Sci 02:12–18

    CAS  Google Scholar 

  142. Lee JH, Kim KJ (2013) Electrochim. Acta 102:196–201

    CAS  Google Scholar 

  143. Kim W-K, Han D-W, Ryu W-H, Lim S-J, Kwon H-S (2012) Electrochim. Acta 71:17–21

    CAS  Google Scholar 

  144. Zhao S, Chang Q, Jiang K, Bai Y, Yang Y, Zhang W (2013) Solid State Ionics 253:1–7

    CAS  Google Scholar 

  145. Zhao S, Bai Y, Chang Q, Yang Y, Zhang W (2013) Electrochim. Acta 108:727–735

    CAS  Google Scholar 

  146. Liu S, Ye SH, Li CZ, Pan GL, Gao XP (2011) J Electrochem Soc 158:A1490

    CAS  Google Scholar 

  147. Wang XJ, Hou YY, Zhu YS, Wu YP, Holze R (2013) Sci Rep 3:5

    Google Scholar 

  148. Tang W, Tian S, Liu LL, Li L, Zhang HP, Yue YB, Bai Y, Wu YP, Zhu K (2011) Electrochem Commun 13:205–208

    CAS  Google Scholar 

  149. Aziz S, Zhao JQ, Cain C, Wang Y (2014) J Mater Sci Technol 30:427–433

    CAS  Google Scholar 

  150. Arumugam D, Kalaignan GP (2011) Thin Solid Films 520:338–343

    CAS  Google Scholar 

  151. Arumugam D, Kalaignan GP (2010) Electrochim. Acta 55:8709–8716

    CAS  Google Scholar 

  152. Qing C, Bai Y, Yang J, Zhang W (2011) Electrochim. Acta 56:6612–6618

    CAS  Google Scholar 

  153. Han SC, Singh SP, Hwang YH, Bae EG, Park BK, Sohn KS, Pyo M (2012) J Electrochem Soc 159:A1867–A1873

    CAS  Google Scholar 

  154. Rajesh YBRD, Dubey RS (2013) Nanoscience and Nanoengineering 1:139–141

    Google Scholar 

  155. Wang FX, Xiao SY, Shi Y, Liu LL, Zhu YS, Wu YP, Wang JZ, Holze R (2013) Electrochim. Acta 93:301–306

    CAS  Google Scholar 

  156. Guler MO, Akbulut A, Cetinkaya T, Uysal M, Akbulut H (2014) Int. J. Hydrogen Energy 39:21447–21460

    CAS  Google Scholar 

  157. Ming H, Yan Y, Ming J, Adkins J, Li X, Zhou Q, Zheng J (2014) Electrochim. Acta 120:390–397

    CAS  Google Scholar 

  158. Dombaycıoğlu Ş, Köse H, Aydın AO, Akbulut H (2016) Int. J. Hydrogen Energy 41:9893–9900

    Google Scholar 

  159. Jian-Kun T, Fu-Cheng W, Battaglia VS, Hai-Lang Z (2014) Int J Electrochem Sci 9:931–942

    Google Scholar 

  160. Yang Z, Jiang Y, Xu H-H, Huang Y-H (2013) Electrochim. Acta 106:63–68

    CAS  Google Scholar 

  161. Lee K-M, Choi H-J, Lee J-G (2001) J Mater Sci Lett 20:1309–1311

    CAS  Google Scholar 

  162. Zhou X, Chen M, Bai H, Su C, Feng L, Guo J (2014) Vacuum 99:49–55

    CAS  Google Scholar 

  163. Nkosi FP, Jafta CJ, Kebede M, le Roux L, Mathe MK, Ozoemena KI (2015) RSC Adv 5:32256–32262

    CAS  Google Scholar 

  164. Şahan H, Göktepe H, Patat Ş, Ülgen A (2011) J Alloys Compd 509:4235–4241

    Google Scholar 

  165. Şahan H, Göktepe H, Patat Ş (2011) J Mater Sci Technol 27:415–420

    Google Scholar 

  166. Şahan H, Göktepe H, Patat Ş, Ülgen A (2010) Solid State Ionics 181:1437–1444

    Google Scholar 

  167. Kebede MA, Kunjuzwa N, Ozoemena K, Mathe M (2013) ECS Trans 50:1–14

    Google Scholar 

  168. Han C-G, Zhu C, Saito G, Akiyama T (2016) Electrochim. Acta 209:225–234

    CAS  Google Scholar 

  169. Han C-G, Zhu C, Saito G, Sheng N, Nomura T, Akiyama T (2017) Electrochim. Acta 224:71–79

    CAS  Google Scholar 

  170. Zhu C, Nobuta A, Saito G, Nakatsugawa I, Akiyama T (2014) Adv. Powder Technol 25:342–347

    CAS  Google Scholar 

  171. Li X, Shao Z, Liu K, Liu G, Xu B (2018) J Electroanal Chem 818:204–209

    CAS  Google Scholar 

  172. Han C-G, Zhu C, Saito G, Akiyama T (2015) Adv. Powder Technol 26:665–671

    CAS  Google Scholar 

  173. Xu W, Li Q, Guo J, Bai H, C-w S, Ruan R, Peng J (2016) Ceram. Int. 42:5693–5698

    CAS  Google Scholar 

  174. Yang Z, Gredin P, Mortier M (2019) Opt Mater:109458

  175. Yi X, Wang X, Ju B, Shu H, Wen W, Yu R, Wang D, Yang X (2014) Electrochim. Acta 134:143–149

    CAS  Google Scholar 

  176. Balaji S, Shanmugan S, Mutharasu D, Ramanathan K (2010) Mater. Sci. - Poland 28:583–593

    CAS  Google Scholar 

  177. Byrappa K, Adschiri T (2007) Prog. Cryst. Growth Charact. Mater. 53:117–166

    CAS  Google Scholar 

  178. Suchanek WL, Riman RE (2006) Adv Sci Technol 45:184–193

    CAS  Google Scholar 

  179. Lv X, Chen S, Chen C, Liu L, Liu F, Qiu G (2014) Solid State Sci 31:16–23

    CAS  Google Scholar 

  180. Ye SH, Bo JK, Li CZ, Cao JS, Sun QL, Wang YL (2010) Electrochim. Acta 55:2972–2977

    CAS  Google Scholar 

  181. Jiang Q, Wang X, Tang Z (2014) Fuller Nanotub Car N 23:676–679

    Google Scholar 

  182. Sathiyaraj K, Gangulibabu, Bhuvaneswari D, Kalaiselvi N, Peter AJ (2012) IEEE NANOTECHNOL 12:314–320

    Google Scholar 

  183. Hwang B-M, Kim S-J, Lee Y-W, Han B, Kim S-B, Kim W-S, Park K-W (2013) Int J Electrochem Sci 8:9449–9458

    CAS  Google Scholar 

  184. Hung IM, Yang Y-C, Su H-J, Zhang J (2015) Ceram Int 41:S779–S786

    CAS  Google Scholar 

  185. Koo BR, Ahn HJ (2017) J. Ceram. Process. Res 18:207–213

    Google Scholar 

  186. Hwang B-M, Kim S-J, Lee Y-W, Park H-C, Kim D-M, Park K-W (2015) Mater Chem Phys 158:138–143

    CAS  Google Scholar 

  187. Shi Y, Zhu S, Zhu C, Li Y, Chen Z, Zhang D (2015) Electrochim. Acta 154:17–23

    CAS  Google Scholar 

  188. Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y (2011) Energy environ. Sci. 4:3985

    CAS  Google Scholar 

  189. He X, Wang J, Jia H, Kloepsch R, Liu H, Beltrop K, Li J (2015) J Power Sources 293:306–311

    CAS  Google Scholar 

  190. Tan XH, Liu HQ, Jiang Y, Liu GY, Guo YJ, Wang HF, Sun LF, Chu WG (2016) J Power Sources 328:345–354

    CAS  Google Scholar 

  191. Deng J, Pan J, Yao Q, Wang Z, Zhou H, Rao G (2015) J Power Sources 278:370–374

    CAS  Google Scholar 

  192. Zhou H, Ding X, Liu G, Jiang Y, Yin Z, Wang X (2015) Electrochim. Acta 152:274–279

    CAS  Google Scholar 

  193. Iturrondobeitia A, Goñi A, Palomares V, Gil de Muro I, Lezama L, Rojo T (2012) J Power Sources 216:482–488

    CAS  Google Scholar 

  194. Li Z, Yang J, Wang J, Tang J, Lei G, Xiao Q (2012) Microporous Mesoporous Mater 162:44–50

    CAS  Google Scholar 

  195. Michalska M, Hamankiewicz B, Ziółkowska D, Krajewski M, Lipińska L, Andrzejczuk M, Czerwiński A (2014) Electrochim. Acta 136:286–291

    CAS  Google Scholar 

  196. Yi Z (2016) J. Mater. Sci.: Mater. Electron. 27:10347–10352

    CAS  Google Scholar 

  197. Han D-W, Ryu W-H, Kim W-K, Eom J-Y, Kwon H-S (2013) J Phys Chem C 117:4913–4919

    CAS  Google Scholar 

  198. Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Nano Energy 22:475–482

    CAS  Google Scholar 

  199. Wang C-M, Jin F-M, Shi T, Chen L (2016) J Electroanal Chem 775:306–310

    CAS  Google Scholar 

  200. Hua W-B, Wang S-N, Guo X-D, Chou S-L, Yin K, Zhong B-H, Dou S-X (2015) Electrochim. Acta 186:253–261

    CAS  Google Scholar 

  201. Jiang C, Tang Z, Zhang Z (2017) Ceram Int 43:11773–11779

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sorin-Aurel Dorneanu or Petru Ilea.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marincaş, AH., Goga, F., Dorneanu, SA. et al. Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries. J Solid State Electrochem 24, 473–497 (2020). https://doi.org/10.1007/s10008-019-04467-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04467-3

Keywords

Navigation