Skip to main content
Log in

Characterization and electrochemical studies on poly(1-naphthylamine)-graphene oxide nanocomposites prepared by in situ chemical oxidative polymerization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Present work demonstrates the synthesis of novel poly(1-naphthylamine)-graphene oxide (PNA–GO) nanocomposites by the polymerization of NA in GO dispersion. Here, GO was synthesized by greener oxidation of graphite without using sodium nitrate. The characterization of PNA–GO nanocomposites by different analytical techniques indicates that structural, thermal, and electrochemical properties are dependent on GO content. Observation of interconnected fibrous arrangement of PNA in PNA–GO nanocomposites suggests the templating interaction of GO on PNA. Electrochemical studies reveal the improvement in capacitance, cyclic stability, and charge transfer characteristics of PNA–GO nanocomposite offering a low-cost and highly processable electrode material.

In situ synthesis and electrochemical studies on poly(1-naphthylamine)-graphene oxide nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171

    Article  CAS  PubMed  Google Scholar 

  2. Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: Template synthesis and applications in energy storage. Int. J. Mol. Sci. 11(7):2636–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: Properties and applications. J Energy Storage 17:224–227

    Article  Google Scholar 

  4. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4(3):453–489

    Article  CAS  Google Scholar 

  5. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem commun 11(6):1158–1161

    Article  CAS  Google Scholar 

  6. Chen J, Li C, Shi G (2013) Graphene Materials for Electrochemical Capacitors. J Phys Chem Lett 4(8):1244–1253

    Article  CAS  PubMed  Google Scholar 

  7. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767–784

    Article  CAS  Google Scholar 

  8. Kim H, Popov BN (2003) Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J Electrochem Soc 150(3):D56–D62. https://doi.org/10.1149/1.1541675

    Article  CAS  Google Scholar 

  9. Khomenko V, Frackowiak E, Barsukov VZ, Béguin F (2006) Development of supercapacitors based on conducting polymers bt - New carbon based materials for electrochemical energy storage systems: batteries, supercapacitors and fuel Cells. Springer Netherlands, Dordrecht, pp 41–50

    Book  Google Scholar 

  10. Shown I, Ganguly A, Chen L-C, Chen K-H (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3(1):2–26

    Article  CAS  Google Scholar 

  11. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672

    Article  CAS  Google Scholar 

  12. Kim J, Park S, Kim S (2013) Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization. Carbon Lett 14(1):51–54

    Article  CAS  Google Scholar 

  13. Zhang X, Wang J, Liu J, Wu J, Chen H, Bi H (2017) Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots. Carbon N Y 115:134–146

    Article  CAS  Google Scholar 

  14. Xu Q, Razal JM, Chen J et al (2018) Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Adv Funct Mater 28:1706592–1706604

    Article  CAS  Google Scholar 

  15. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401

    Article  CAS  Google Scholar 

  16. Hu X, Yu Y, Bai H, Zhang X, Wang Y, Zhou J (2019) Synthesis of graphene oxide with superhydrophilicity and well-defined sheet size distribution. Mater Test 61(3):273–276

    Article  CAS  Google Scholar 

  17. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  19. Parwaz Khan AA, Khan A, Asiri AM (2018) Graphene and Graphene Oxide Polymer Composite for Biosensors Applications. In: Khan A, Jawaid M, Parwaz Khan AA, Asiri AM (eds) Electrically conductive polymer and polymer composites, pp 93–112

    Chapter  Google Scholar 

  20. Shaffie KA (2000) Preparation and characterization of polynaphthylamine (PNA) as a novel conducting polymer. J Appl Polym Sci 77(5):988–992

    Article  CAS  Google Scholar 

  21. Huang SS, Li J, Lin HG, Yu RQ (1995) Electropolymerization of 1-naphthylamine and the structure of the polymer film. Microchim Acta 117(3-4):145–152

    Article  CAS  Google Scholar 

  22. Ciric-Marjanovic G, Marjanović B, Stamenković V et al (2002) Structure and stereochemistry of electrochemically synthesized poly-(1-naphthylamine) from neutral acetonitrile solution. J Serbian Chem Soc 67(12):867–877

    Article  CAS  Google Scholar 

  23. Jadoun S, Verma A, Ashraf SM, Riaz U (2017) A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym Sci 295(9):1443–1453

    Article  CAS  Google Scholar 

  24. Ameen S, Akhtar MS, Kim YS, Shin HS (2011) Nanocomposites of poly(1-naphthylamine)/SiO2 and poly(1-naphthylamine)/TiO2: Comparative photocatalytic activity evaluation towards methylene blue dye. Appl Catal B Environ 103(1-2):136–142

    Article  CAS  Google Scholar 

  25. Riaz U, Ahmad S, Ashraf SM (2008) Effect of dopant on the nanostructured morphology of poly (1-naphthylamine) synthesized by template free method. Nanoscale Res Lett 3(1):45–48

    Article  CAS  Google Scholar 

  26. zhen HZ, Yu X, hui YJ et al (2018) Largely enhanced dielectric properties of poly(vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Compos Part A Appl Sci Manuf 104:89–100

    Article  CAS  Google Scholar 

  27. Rana U, Malik S (2012) Graphene oxide/polyaniline nanostructures: Transformation of 2D sheet to 1D nanotube and in situ reduction. Chem Commun 48:10862–10864

    Article  CAS  Google Scholar 

  28. Zhou H, Han G, Xiao Y, Chang Y, Zhai HJ (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267

    Article  CAS  Google Scholar 

  29. Gui D, Liu C, Chen F, Liu J (2014) Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl Surf Sci 307:172–177

    Article  CAS  Google Scholar 

  30. Riaz U, Ahmad S, Ashraf SM (2008) Pseudo template synthesis of poly (1-naphthylamine): Effect of environment on nanostructured morphology. J Nanoparticle Res 10(7):1209–1214

    Article  CAS  Google Scholar 

  31. Ashraf SM, Ahmad S, Riaz U (2006) Synthesis and characterization of novel poly(1-naphthylamine)- montmorillonite nanocomposites intercalated by emulsion polymerization. J Macromol Sci Part B Phys 45(B):1109–1123

    Article  CAS  Google Scholar 

  32. Atiqah TN, Tan SJ, Foo KL, Supri AG, al Bakri AMM, Liew YM (2018) Effect of graphite loading on properties of polyaniline/graphite composites. Polym Bull 75(1):209–220

    Article  CAS  Google Scholar 

  33. Yablokov MY, Gil’man AB, Shchegolikhin AN et al (2011) Polymer synthesis from 1-aminonaphthalene in direct-current discharge. High Energy Chem 45:157–161

    Article  CAS  Google Scholar 

  34. Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48(4):1729–1739

    Article  CAS  Google Scholar 

  35. Salimikia I, Heydari R, Yazdankhah F (2018) Polyaniline/graphene oxide nanocomposite as a sorbent for extraction and determination of nicotine using headspace solid-phase microextraction and gas chromatography–flame ionization detector. J Iran Chem Soc 15(7):1593–1601

    Article  CAS  Google Scholar 

  36. Zhong J, Gao S, Xue G, Wang B (2015) Study on enhancement mechanism of conductivity induced by graphene oxide for Polypyrrole nanocomposites. Macromolecules 48(5):1592–1597

    Article  CAS  Google Scholar 

  37. Yaghoubidoust F, Wicaksono DHB, Chandren S, Nur H (2014) Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric. J Mol Struct 1075:486–493

    Article  CAS  Google Scholar 

  38. Ashok Kumar N, Baek JB (2014) Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chem Commun 50:6298–6308

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the SAIF, STIC, CUSAT, and Kerala, India, for characterization facilities.

Funding

The authors would like to thank the financial assistance to Femina K.S. granted by the University Grants Commission, Govt. of India under Faculty Development Programme (Grant No. FIP/12th Plan/KLMG 009 TF 12 dated 20 /04/2017) and to Alex Joseph by the Kerala State Council for Science, Technology and Environment (KSCSTE) Thiruvananthapuram, Kerala, India under SARD scheme (Grant No.002/SARD/2015/KSCSTE). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Vazhathara Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidu, F.K., Joseph, A., Varghese, E.V. et al. Characterization and electrochemical studies on poly(1-naphthylamine)-graphene oxide nanocomposites prepared by in situ chemical oxidative polymerization. J Solid State Electrochem 23, 2897–2906 (2019). https://doi.org/10.1007/s10008-019-04380-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04380-9

Keywords

Navigation