Skip to main content
Log in

CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Considering serious pollution from the traditional chemical synthesis process, the resource-rich, clean electrode materials are greatly desired. Conventional electrochemical performance improvement methods, such as quantum dot or coating, are complicated and costly. In this study, CuFeS2 with an enhanced cycle performance is prepared from natural ore chalcopyrite through simple flotation and acid leaching. We obtain micro-sized CuFeS2 with high yield and purity. Electrochemical measurement shows that the natural chalcopyrite with an EDD-S electrolyte displays a high initial charge capacity (992 mAh·g−1 at the initial discharge current density of 0.2 C), an excellent rate performance, and good cycle property. The discharge capacities are approximately 870, 850, 830, 800, 750, and 680 mAh·g−1 at current densities of 0.1, 0.2, 0.3, 0.5, 1, and 2 C, respectively. When the current density is reduced back to 0.1 C, the reversible capacity can recover to 860 mAh·g−1, the cyclability is impressive (initial capacity of 700 mAh·g−1 and 660 mAh·g−1 maintained for 1000 cycles at a high current density of 2 C, corresponding to an excellent capacity retention of 94% after 1000 cycles).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  2. Evarts EC (2015) Lithium batteries: to the limits of lithium. Nature 526(7575):S93–S95

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, YongHuang G, Sun H, Ahmad M, Mou Q, Zhang H (2018) Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. J Colloid Interface Sci 529:357–365

    Article  CAS  PubMed  Google Scholar 

  4. Wen Y, He K, Zhu YJ, Han FD, Xu YH, Matsuda I, Ishii Y, Cumings J, Wang CS (2015) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    Article  CAS  Google Scholar 

  5. Zhang L, Sun D, Kang J, Wang H-T, Hsieh S-H, Pong W-F, Bechtel HA, Feng J, Wang L-W, Cairns EJ, Guo J (2018) Tracking the chemical and structural evolution of the TiS2 electrode in the lithium-ion cell using operando X-ray absorption spectroscopy. Nano Lett 18(7):4506–4515

    Article  CAS  PubMed  Google Scholar 

  6. Ma L, Zhao B, Wang X, Yang J, Zhang X, Zhou Y, Chen J (2018) MoS2 nanosheets vertically grown on carbonized corn stalks as lithium-ion battery anode. ACS Appl Mater Interfaces 10(26):22067–22073

    Article  CAS  PubMed  Google Scholar 

  7. Yan L, Luo N, Kong W, Luo S, Wu H, Jiang K, Li Q, Fan S, Duan W, Wang J (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177

    Article  CAS  Google Scholar 

  8. Li S, Tang H, Ge P, Jiang F, Zhou J, Zhang C, Hou H, Sun W, Ji X (2018) Electrochemical investigation of natural ore molybdenite (MoS2) as a first-hand anode for lithium storages. ACS Appl Mater Interfaces 10(7):6378–6389

    Article  CAS  PubMed  Google Scholar 

  9. Walter M, Zuend T, Kovalenko MV (2015) Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20):9158–9163

    Article  CAS  PubMed  Google Scholar 

  10. Jun L, Yuren W, Yi W, Peter A, van Aken J, Maier YY (2014) Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater 26(34):6025–6030

    Article  CAS  Google Scholar 

  11. Xu X, Liu J, Liu Z (2017) Robust pitaya-structured pyrite as high energy density cathode for high rate lithium batteries. ACS Nano acsnano 11:7b03530

    Google Scholar 

  12. Meng X, Deng D (2016) Trash to treasure: waste eggshells used as reactor and template for synthesis of Co9S8 nanorod arrays on carbon fibers for energy storage. Chem Mater 28(11):3897–3904

    Article  CAS  Google Scholar 

  13. Ghezelbash A, Sigman MB, Korgel BA (2004) Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett 4(4):537–542

    Article  CAS  Google Scholar 

  14. Jin C, Fu L, Zhu J, Yang W, Li D, Zhou L (2018) A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery. Mater Chem A 6(16):7123–7132

    Article  CAS  Google Scholar 

  15. Du X, Zhao H, Zhang Z, Lu Y, Gao C, Li Z, Teng Y, Zhao L, Swierczek K (2017) Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim Acta 225:129–138

    Article  CAS  Google Scholar 

  16. Liu Z, Deng H, Mukherjee PP (2015) Evaluating pristine and modified SnS2 as a lithium-ion battery anode: a first-principles study. ACS Appl Mater Interfaces 7(7):4000–4009

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Huang Y, Zhang Y, Fan W, Liu T (2015) Three dimensional nanoporous graphene-carbon nanotube hybrid frameworks for confinement of SnS2 nanosheets: flexible and binder-free papers with highly reversible lithium storage. ACS Appl Mater Interfaces 7(50):27823–27830

    Article  CAS  PubMed  Google Scholar 

  18. Ding W, Wang X, Peng HF, Hu LN (2015) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater Chem Phys 137:872–876

    Article  CAS  Google Scholar 

  19. Wang Y, Li X, Zhang Y, He X, Zha J (2015) Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage. Electrochim Acta 158:368–373

    Article  CAS  Google Scholar 

  20. Wu X, Zhao Y, Yang C, He G (2015) PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J Mater Sci 50(12):4250–4257

    Article  CAS  Google Scholar 

  21. Guo P, Song H, Liu Y, Wang C (2017) CuFeS2 quantum dots anchored in carbon frame: superior lithium storage performance and the study of electrochemical mechanism. ACS Appl Mater Interfaces 9(37):31752–31762

    Article  CAS  PubMed  Google Scholar 

  22. Mikhlina YL, Tomashevicha YV, Asanovb IP, Okotrubb AV, Varnekb VA, Vyalik DV (2014) Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions. Appl Surf Sci 225:395–409

    Article  CAS  Google Scholar 

  23. Peters JF, Baumann M, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-Ion batteries and the role of key parameters. Renewable Sustainable Energy Rev 67:491–506

    Article  CAS  Google Scholar 

  24. Liang Y, Su J, Xi B, Yu Y, Ji D, Sun Y, Cui C, Zhu J (2017) Life cycle assessment of lithium-ion batteries for greenhouse gas emission. Resour Conserv Recycl 117:285–293

    Article  Google Scholar 

  25. Mikhlin Y, Karacharov A, Tomashevich Y, Shchukarev A (2016) Cryogenic XPS study of fast-frozen sulfide minerals: flotation-related adsorption of n-butyl xanthate and beyond. J Electron Spectrosc Relat Phenom 206:65–73

    Article  CAS  Google Scholar 

  26. Boekemaa C, Krupski AM, Varasteh M, Parvin K, Til F, Woude F, Sawatzky GA (2004) Cu and Fe valence states in CuFeS2. J Magn Magn Mater 276:559–561

    Article  CAS  Google Scholar 

  27. Ghahremaninezhad A, Dixon DG, Asselin E (2013) Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim Acta 87:97–112

    Article  CAS  Google Scholar 

  28. Siriwardene RV, Cook JM (1985) Iron (II) sulfide. Colloid Interface Sci 108:414

    Article  Google Scholar 

  29. Panzuner G, Egert B (1984) Iron sulfide (FeS2). Surf Sci 144:651

    Article  Google Scholar 

  30. McIntyre NS, Zetaruk DG (1977) Iron (III) hydroxide oxide. Anal Chem 49(11):1521–1529

    Article  CAS  Google Scholar 

  31. Zhao H, Wang J, Gan X, Hu M, Zhang E, Qin W, Qiu G (2015) Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: an emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis. Miner Eng 81:29–39

    Article  CAS  Google Scholar 

  32. Wang J, Gan X, Zhao H, Hu M, Li K, Qin W, Qiu G (2016) Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis. Miner Eng 98:264–278

    Article  CAS  Google Scholar 

  33. Zhao Q, Liu W, Wei D, Wang W, Cui B, Liu W (2018) Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant. Miner Eng 115:44–52

    Article  CAS  Google Scholar 

  34. Park Y, Shin SH, Hwang H, Lee SM, Kim SP, Choi HC, Jung YM (2014) Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J Mol Struct 1069:157–163

    Article  CAS  Google Scholar 

  35. Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M, Stephani G, Hauser R, Eckert J, Giebeler L (2017) Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater 6:26–35

    Article  Google Scholar 

  36. Choi N-S, Yew KH, Lee KY, Sung M, Kim H, Kim S-S (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161(2):1254–1259

    Article  CAS  Google Scholar 

  37. Sim S, Oh P, Park S, Cho J (2013) Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Adv Mater 25(32):4498–4503

    Article  CAS  PubMed  Google Scholar 

  38. Han H-B, Zhou S-S, Zhang D-J, Feng S-W, Li L-F, Liu K, Feng W-F, Nie J, Li H, Huang X-J, Armand M, Zhou Z-B (2011) Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J Power Sources 196(7):3623–3632

    Article  CAS  Google Scholar 

  39. Takekawa T, Kamiguchi K, Imai H, Hatano M (2015) Physicochemical and electrochemical properties of the organic solvent electrolyte with lithium bis(fluorosulfonyl)imide (LiFSI) as lithium-ion conducting salt for lithium-ion batteries. ECS Trans 64(24):11–16

    Article  CAS  Google Scholar 

  40. Ding W, Wang X, Peng H, Hu L (2013) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium-ion battery. Mater Chem Phys 137(3):872–876

    Article  CAS  Google Scholar 

  41. Liu Y, Jin B, Zhu Y-F, Ma XZ, Lang XY (2015) Synthesis of Cu2S/carbon composites with improved lithium storage performance. Int J Hydrog Energy 40(1):670–674

    Article  CAS  Google Scholar 

  42. Meng X, Riha SC, Libera JA, Wu Q, Wang H-H, Martinson ABF, Elam JW (2015) Tunable core-shell single-walled carbon nanotube-Cu2S networked nanocomposites as high-performance cathodes for lithium-ion batteries. J Power Sources 280:621–629

    Article  CAS  Google Scholar 

  43. Lai C-H, Huang K-W, Cheng J-H, Lee C-Y, Hwang B-J, Chen L-J (2010) Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J Mater Chem 20(32):6638–6645

    Article  CAS  Google Scholar 

  44. Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7(2):632–637

    Article  CAS  Google Scholar 

  45. Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17(5):582–586

    Article  CAS  Google Scholar 

  46. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Zhu X, Sitinamaluwa H, Wasalathilake K, Xu L, Zhang S, Yan C (2017) Graphene oxide wrapped Fe2O3 as a durable anode material for high-performance lithium-ion batteries. J Alloys Compd 714:425–432

    Article  CAS  Google Scholar 

  48. Qina A, Ji J, Du R, Tian N, Liao L, Zhang K, Wei C (2018) Hydrothermal synthesis and electrochemical performance of CuS@sisal fiber carbon composite lithium-ion battery anodes. Compos Commun 7:47–50

    Article  Google Scholar 

  49. Tao Y, Rui K, Wen Z, Wang Q, Jin J, Zhang T, Wu T (2016) FeS2 microsphere as cathode material for rechargeable lithium batteries. Solid State Ionics 290:47–52

    Article  CAS  Google Scholar 

  50. Hou H, Jing M, Huang Z, Yang Y, Zhang Y, Che J, Wu Z, Ji X (2015) One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 7(34):19362–19369

    Article  CAS  PubMed  Google Scholar 

  51. Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C (2015) Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9(3):3254–3264

    Article  CAS  PubMed  Google Scholar 

  52. Chang K, Geng D, Li X, Yang J, Tang Y, Cai M, Li R, Sun X (2013) Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater 3(7):839–844

    Article  CAS  Google Scholar 

  53. Liu X, Niu C, Meng J, Xu X, Wang X, Wen B, Guo R, Mai L (2016) Gradient-temperature hydrothermal fabrication of hierarchical Zn2SnO4 hollow boxes stimulated by thermodynamic phase transformation. Mater Chem 4(37):14095–14100

    Article  CAS  Google Scholar 

  54. Li S, Ge P, Zhang C, Sun W, Hou H, Ji X (2017) The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources 366:249–258

    Article  CAS  Google Scholar 

  55. Ge P, Hou H, Ji X, Huang Z, Li S, Huang L (2018) Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater Chem Phys 203:185–192

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51704330, 51622406, 21673298, and 21473258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Sun, Xiaobo Ji or Yue Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Jiang, F., Li, S. et al. CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite. J Solid State Electrochem 23, 1991–2000 (2019). https://doi.org/10.1007/s10008-019-04284-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04284-8

Keywords

Navigation