Skip to main content

Advertisement

Log in

Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g−1 after 1000 cycles with a low average fading capacity of 0.15 mAh g−1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g−1 is remained at the current densities of 10.0 A g−1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen M, Liu X, Zhao Y, Liu S, Liu H, Dong Y, Kuang Q, Fan Q (2017) Synthesis of alluaudite-type Na2VFe2(PO4)3/C and its electrochemical performance as cathode material for sodium-ion battery. J Solid State Electrochem 22:891–898

    Article  CAS  Google Scholar 

  2. Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929

    Article  CAS  PubMed  Google Scholar 

  3. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    Article  CAS  PubMed  Google Scholar 

  4. Guo YP, Wei YQ, Li HQ, Zhai TY (2017) Layer structured materials for advanced energy storage and conversion. Small 13(45):1701649

    Article  CAS  Google Scholar 

  5. Li L, Zhong B (2017) The design and preparation of the composite with layered spherical structure for Li-S battery. J Solid State Electrochem 22:591–598

    Article  CAS  Google Scholar 

  6. Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L (2017) Opening two-dimensional materials for energy conversion and storage: a concept. Adv Energy Mater 7(19):1602684

    Article  CAS  Google Scholar 

  7. Ma XX, Liu SK, Zhang K, Liu XS, Hao J, Chi CX, Zhao JP, Liu XX, Li Y (2018) Facile scalable synthesis of ordered macroporous few-layer MoS2 and carbon hybrid nanoarchitectures with sodium-ion batteries. J Mater Sci Mater Electron 29(4):3492–3501

    Article  CAS  Google Scholar 

  8. Ma X, Liu X, Zhao J, Hao J, Chi C, Liu X, Yao L, Liu S, Zhang K (2016) Improved cycling stability of MoS2-coated carbon nanotubes on graphene foam as a flexible anode for Lithium-ion batteries. New J Chem 41(2):588–593

    Article  Google Scholar 

  9. Wang X, Weng Q, Yang Y, Bando Y, Golberg D (2016) Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem Soc Rev 45(15):4042–4073

    Article  CAS  PubMed  Google Scholar 

  10. Luo C, Lin H, Qi R, Zhong N, Peng H (2017) High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. J Solid State Electrochem 21:2071–2077

    Article  CAS  Google Scholar 

  11. Wang T, Chen S, Pang H, Xue H, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy storage. Adv Sci 4(2):1600289

    Article  CAS  Google Scholar 

  12. Dou Y, Zhang L, Xu X, Sun Z, Liao T, Dou S (2017) Atomically thin non-layered nanomaterials for energy storage and conversion. Chem Soc Rev 46(23):7338–7373

    Article  CAS  PubMed  Google Scholar 

  13. Kang W, Wang Y, Xu J (2017) Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J Mater Chem A 5(17):7667–7690

    Article  CAS  Google Scholar 

  14. Wang Z, Mi B (2017) Environmental applications of 2D molybdenum disulfide (MoS2) Nanosheets. Environ Sci Technol 51(15):8229–8244

    Article  CAS  PubMed  Google Scholar 

  15. Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced Lithium storage. Angew Chem Int Edit 55(41):12783–12788

    Article  CAS  Google Scholar 

  16. Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26(6):911–918

    Article  CAS  Google Scholar 

  17. Shi Z, Kang W, Xu J, Sun Y, Jiang M, Ng T, Xue H, Yu D, Zhang W, Lee C (2016) Hierarchical nanotubes assembled from MoS2−carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22:27–37

    Article  CAS  Google Scholar 

  18. Oakes L, Carter R, Hanken T, Cohn AP, Share K, Schmidt B, Pint C (2016) Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat Commun 7:11796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stephenson T, Li Z, Olsen B, Mitlin D (2013) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7(1):209–231

    Article  Google Scholar 

  20. Zhang K, Wang YM, Ma XX, Zhang HC, Hou S, Zhao J, Li XG, Qiang LS, Li Y (2017) Three dimensional molybdenum oxide/polyaniline hybrid nanosheet networks with outstanding optical and electrochemical properties. New J Chem 41(19):10872–10879

    Article  CAS  Google Scholar 

  21. Li H, Li W, Ma L, Chen W, Wang J (2009) Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J Alloys Compd 471(1):442–447

    Article  CAS  Google Scholar 

  22. Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y, Zhao L, Du X, Du Z, Lv P, Swierczek K (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10(9):8526–8535

    Article  CAS  PubMed  Google Scholar 

  23. Wu X, Xu X, Qi M, Li W, Bai J, Wang L (2013) Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon 62:330–336

    Article  CAS  Google Scholar 

  24. Jiang H, Ren D, Wang H, Hu Y, Guo S, Yuan H, Hu P, Zhang L, Li C (2015) 2D monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater 27(24):3687–3695

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Zhou W, Lu AY, Fang W, Lee Y, Hsu A, Kim S, Kim K, Yang H, Li L (2012) Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett 12(6):2784–2791

    Article  CAS  PubMed  Google Scholar 

  26. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2):1759–1770

    Article  CAS  PubMed  Google Scholar 

  27. Ataca C, Topsakal M, Aktürk E, Ciraci S (2011) A comparative study of lattice dynamics of three- and two-dimensional MoS2. J Phys Chem C 115(33):16354–16361

    Article  CAS  Google Scholar 

  28. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22(7):1385–1390

    Article  CAS  Google Scholar 

  29. Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 44(5):1934–1946

    Article  CAS  Google Scholar 

  30. Toth PS, Velický M, Bissett MA, Slater T, Savjani N, Rabiu A, Rakowski A, Brent J, Haigh S, OBrien P (2016) Asymmetric MoS2/graphene/metal sandwiches: preparation, characterization, and application. Adv Mater 28(37):8256–8264

    Article  CAS  PubMed  Google Scholar 

  31. Park J, Kim JS, Park JW, Nam T, Kim K, Ahn J, Wang G, Ahn H (2013) Discharge mechanism of MoS2, for sodium ion battery: electrochemical measurements and characterization. Electrochim Acta 92(1):427–432

    Article  CAS  Google Scholar 

  32. Zhao L, Hong C, Lin L, Wu H, Su Y, Zhang X, Liu A (2017) Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon 116:223–231

    Article  CAS  Google Scholar 

  33. Rao D, Wang Y, Zhang L, Yao S, Qian X, Xi X, Xiao K, Deng K, Shen X, Lu R (2016) Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution. Carbon 110:207–214

    Article  CAS  Google Scholar 

  34. González JR, Alcántara R, Tirado JL, Fielding A, Dryfe R (2017) Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: new insights on the reaction mechanism. Chem Mater 29(14):5886–5895

    Article  CAS  Google Scholar 

  35. Zhang L, Tang Y, Wang Y, Duan Y, Xie D, Wu C, Cui L, Li Y, Ning X, Shan Z (2016) In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction. RSC Adv 6(98):96035–96038

    Article  CAS  Google Scholar 

  36. Li Q, Yao Z, Wu J, Mitra S, Hao S, Sahu T, Li Y, Wolverton C, Dravid V (2017) Intermediate phases in sodium intercalation into MoS2 Nanosheets and their implications for sodium-ion batteries. Nano Energy 38:342–349

    Article  CAS  Google Scholar 

  37. Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27(32):1702116

    Article  CAS  Google Scholar 

  38. Wang X, Li G, Seo M, Hassan F, Hoque M, Chen Z (2016) Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for Lithium-ion batteries. Adv Energy Mater 5(23):1501106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Natural Science Foundation of China (No. 51502057, 51572058, 51307046, 91216123, 51174063), the Natural Science Foundation of Heilongjiang Province (E201436), the International Science & Technology Cooperation Program of China (2013DFR10630, 2015DFE52770), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031), Natural Science Foundation of Heilongjiang Province of China (Grant No. E2016062), the China Postdoctoral Science Foundation (General Financial Grant No. 2014M561345), the Heilongjiang Postdoctoral Science Foundation (LBH-Z14105), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry (No. 20151098), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang province (No. 2015082), the Open Project Program of the Key Laboratory for Photonic and Electric Band Gap Materials of the Ministry of Education of Harbin Normal University (No. PEBM201405), postdoctoral scientific research developmental fund of Henlongjiang Province (LBH-Q14144), the Research Foundation for the Returned Overseas Chinese excellent Scholars of Heilongjiang Province (No. 2015424), National Key Research & Development Program (2016YFB0303903), and the Foundation of Science and Technology on Advanced Composites in Special Environment Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiupeng Zhao, Xiaoxu Liu or Yao Li.

Electronic supplementary material

ESM 1

(DOC 735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, N., Liu, S. et al. Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes. J Solid State Electrochem 22, 2801–2809 (2018). https://doi.org/10.1007/s10008-018-3994-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3994-z

Keywords

Navigation