Skip to main content
Log in

Structural, electrical, and electrochemical properties of poly(vinylidene fluoride-co-hexaflouropropylene)/poly(vinyl acetate)-based polymer blend electrolytes for rechargeable magnesium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An attempt has been made to prepare a new blend polymer electrolytes (BPEs) based on PVdF-co-HFP and PVAc doped with Mg (ClO4)2 by using the solvent-casting technique. The physicochemical properties of the as prepared polymer electrolytes were characterized by XRD, FTIR, SEM, TG/DTA, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The maximum ionic conductivity value 3.85 × 10−5 S cm−1 has been observed for PVdF-co-HFP (69)-PVAc (23)-Mg (ClO4)2 (8 wt%) system at 30 °C using AC impedance spectroscopic technique. The FTIR analysis confirms the complex formation between the polymers and salts. The TG/DTA studies showed the thermal stability of the film. The polymer electrolyte membrane shows a wide electrochemical stability window, and the temperature dependence of ionic conductivity obeys the Arrhenius rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

PVdF-HFP:

poly(vinylidene fluoride-co-hexaflouropropylene)

PVAc:

poly(vinyl acetate)

XRD:

X-ray diffraction,

FTIR:

Fourier-transform infrared spectroscopy

SEM:

scanning electron microscope,

TG/DTA:

Thermogravimetric/differential thermal analysis

PMMA:

poly(methyl methacrylate)

PEG:

polyethylene glycol

References

  1. Mohtadi R, Mizuno F (2014) Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnology 5:1291–1311

    Article  CAS  Google Scholar 

  2. Liu C, Zachary GN, Cao G (2016) Mater Today. 19(2):109–123. https://doi.org/10.1016/j.mattod.2015.10.009

    Article  CAS  Google Scholar 

  3. Ha CJ, HyukYoon J, IlCho W, HoJang (2004) Electrochemical properties of LiNi0.8Co0.2 − xAlxO2 prepared by a sol–gel method. J Power Sources 136:132–138

    Article  CAS  Google Scholar 

  4. Deng H, Nie P, Luo H, Zhang Y, Wang J, Zhang X (2014) Highly enhanced lithium storage capability of LiNi0.5Mn1.5O4 by coating with Li2TiO3 for Li-ion batteries. J Mater Chem A 2(43):18256–18262

    Article  CAS  Google Scholar 

  5. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen geman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727

    Article  CAS  PubMed  Google Scholar 

  6. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187(2):627–634

    Article  CAS  Google Scholar 

  7. Novak P, Imdhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium. Electrochim Acta 45(1-2):351–367

    Article  CAS  Google Scholar 

  8. Wu N, Yang ZZ, Yao HR, Yin YX, Gu L, Guo YG (2015) Improving the electrochemical performance of Li4Ti5O12 electrode in a rechargeable Mg battery by lithium magnesium co-intercalation. J Angew Chem Int Ed 54(19):5757–5761

    Article  CAS  Google Scholar 

  9. Tao ZL, Xu LN, Gou XL, Chen J, Yuan HI (2004) TiS2 nanotubes as the cathode materials of Mg ion batteries. J Chem Comm 18:2080–2081

    Article  CAS  Google Scholar 

  10. Kim J, Lee J, You J, Park MS, Hossain MSA, Yamauchi Y, Kim JH (2016) Conductive polymers for next generation energy storage systems, recent progress and new function. MaterHoriz 3:517–535

    CAS  Google Scholar 

  11. Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium applications to energy storage. J Electrochem Soc 137(3):775–780

    Article  CAS  Google Scholar 

  12. Kumar GG, Munichandriah N (2002) Poly(methylmethacrylate) magnesium triflate gel polymer electrolyte for solid state magnesium battery application. J Electrochim Acta 47(7):1013–1022

    Article  CAS  Google Scholar 

  13. Yoshimoto N, Yakushiji S, Ishikawa M, Morita M (2003) Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts. J. Electrochim Acta 48(14-16):2317–2322

    Article  CAS  Google Scholar 

  14. Polu AR, Kumar R (2012) Ionic conductivity and discharge characteristic studies of PVA-Mg (CH3COO)2 solid polymer electrolytes. Int J Polymer Mater 62:76–80

    Article  CAS  Google Scholar 

  15. Polu AR, Kumar R (2014) Mg2+-ion conducting poly(ethylene glycol)-TiO2composite polymer electrolytes for solid-state batteries. Materials Express 4:79–84

    Article  CAS  Google Scholar 

  16. Ulaganathan M, Rajendran S (2010) Preparation and characterization of PVAc/P(VdF-HFP)-based polymer blend electrolytes. Ionics 16:515–521

  17. Pandey GP, Agrawal RC, Hashmi SA (2011) Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem 15(10):2253–2264

    Article  CAS  Google Scholar 

  18. Oh JS, Ko JM, Kim DW (2004) Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. J Electrochim Acta 50(2-3):903–906

    Article  CAS  Google Scholar 

  19. Shakur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chotosan-PEO and application in electrochemical devices. Opt Mater 35(10):1834–1841

    Article  CAS  Google Scholar 

  20. Kalyanasundaram NT, Subramanian A, Lokesh KS, Muhammed Musthafa OT (2008) Effect of porosity on PVdF-HFP/PMMA based electrolyte. J Materials Chem and Phy 110:11–16

    Article  CAS  Google Scholar 

  21. Basri NH, Mohamed NS (2009) Conductivity studies and dielectric behavior of PVdF-HFP/PVC LiClO4 solid polymer electrolyte. Solid State Sci Technol 17:63–72

    CAS  Google Scholar 

  22. Rajendran S, Shanthi Bama V, Ramesh Prabhu M (2010) Effect of lithium salt concentration in PVAc/PMMA-based gel polymer electrolytes. Ionics 16(1):27–32

    Article  CAS  Google Scholar 

  23. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) PVdF-HFP/PVAc: a review of recent developments in membrane separators for rechargeable lithium-ion batteries. J Energy Environ Sci 7(12):3857–3886

    Article  CAS  Google Scholar 

  24. JuHwangSoo Y, KyungJeong KSN, Manuel Stephan A (2007) Electrochemical studies on poly(vinylidene fluoride–hexafluoropropylene) membranes prepared by phase inversion method. Eur Polym J 43:65–71

    Article  CAS  Google Scholar 

  25. Ulaganathan M, Rajendran S (2010) Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J Appl Polym Sci 118:646–651

    CAS  Google Scholar 

  26. Kirankumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, VVR NR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  CAS  Google Scholar 

  27. Kim DW, Park JK, Rhee HW (1996) Conducting and thermal studies of solid polymer electrolytes prepared by poly(ethyleneoxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium perchlorate. Solid State Ionics 83(1-2):49–56

    Article  CAS  Google Scholar 

  28. Kim CH, Kim HT, Park JK, Moon SI, Yoon MS (1996) Preparation and ionic conductivities of the plasticized polymer electrolytes based on poly(methyl methacrylate-co-alkali metal methacrylate). J polymer Sci: part B:Polymer Phys 34(16):2709–2714

    Article  CAS  Google Scholar 

  29. Sung HY, Wang YY, Wan CC (1998) Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries. J Electrochem Soc 145(4):1207–1211

    Article  CAS  Google Scholar 

  30. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized PVCPMMA blend polymer electrolytes. Electrochimca Acta 42(10):1571–1579

    Article  CAS  Google Scholar 

  31. Jian-HuaCao, Bao-KuZhu, You-YiXu (2006) Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J Membr Sci 281:446–453

    Article  CAS  Google Scholar 

  32. Wieczorek W, Florjancy Z, Stevens JR (1995) Proton conducting polymer gels based on a poly acrylamide matrix. Electrochim Acta J 40:2327–2330

    Article  CAS  Google Scholar 

  33. Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) Ionic conductivity and electrochemical stability of PMMA-PEO blend ceramic filler composites. J Phys Chem Solids 69(1):243–248

    Article  CAS  Google Scholar 

  34. Prajapathi GK, Roshan R, Gupta PN (2010) Effect of plasticizer on ionic transport and dielectric properties of PVA:H3PO4 proton conducting polymeric electric electrolyte. J Phys and Chem of Solids 71(12):1717–1723

    Article  CAS  Google Scholar 

  35. Ulaganathan M, Rajendran S (2011) Novel Li-ion conduction on poly(vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. J Appl Electrochem 41(1):83–88

    Article  CAS  Google Scholar 

  36. Gebreyesus MA, Purushotham Y, Sivakumar J (2016) Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2(7):e00134. https://doi.org/10.1016/j.heliyon.2016.e00134

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abbrent S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42(4):1407–1416

    Article  CAS  Google Scholar 

  38. Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2012) Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int J Electrochem Sci 7:6693–6703

    CAS  Google Scholar 

  39. Tafur JP, Santos F, Fernández Romero AJ (2015) Influence of the ionic liquid on the gel polymer electrolytes properties. Membranes 5(4):752–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) Vibrational ac impedance and dielectric spectroscopic studies of poly(vinylacetate)-N,N-dimethylformamide-LiClO4 polymer gel electrolytes. J Power Sources 134(2):235–240

    Article  CAS  Google Scholar 

  41. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2007) Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J Phys and Chem Solids 68(3):407–412

    Article  CAS  Google Scholar 

  42. Arunkumar D, Selvasekarapandian S, Baskaran R, Savitha T, Nithya H (2012) Thermal vibrational and AC impedence studies on proton conducting polymer electrolytes based on poly(vinylacetate). J Non crystal solids 358:531–536

    Article  CAS  Google Scholar 

  43. Ulaganathan M, Nithya R, Rajendran S, Raghu S (2012) Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ionics 218:7–12

    Article  CAS  Google Scholar 

  44. Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98(3-4):167–174

    Article  CAS  Google Scholar 

  45. Ulaganathan M, Chithra MM, Rajendran S (2013) Highly porous lithium ion conducting solvent free poly(vinylidene fluoride-co-hexafluoropropylene)/poly( ethyl methacrylate) based polymer blend electrolytes for Li battery applications. J. Electrochim Acta 93:230–235

    Article  CAS  Google Scholar 

  46. Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc-LiClO4 polymer electrolytes. J Spectrochim Acta part A 65(5):1234–1240

    Article  CAS  Google Scholar 

  47. Ulaganathan M, Sundar Pethaiah S, Rajendran S (2011) Li-ion conduction in PVAc based blend electrolytes for lithium battery applications. J Mater Chem Phys 129(1-2):471–476

    Article  CAS  Google Scholar 

  48. Tsunemi K, Ohno H, Tsuchida A (1983) A mechanism of ionic conduction of poly(vinylidene fluoride)-lithium perchlorate hybrid films. J. Electrochim Acta 28(6):833–837

    Article  CAS  Google Scholar 

  49. Park US, Hong YJ, Oh SM (1996) Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (pan)-based polymer gel electrolytes. J Electrochim Acta 41(6):849–855

    Article  CAS  Google Scholar 

  50. Missan HPS, Chu PP, Sekhon SS (2006) Ion conduction mechanism in non-aqueous polymer electrolytes based on oxalic acid: effect of plasticizer and polymer. J Power Sources 158(2):1472–1479

    Article  CAS  Google Scholar 

  51. Polu AR, Kumar R (2013) Preparation and characterization of PVA based polymer electrolytes for electrochemical cell application. Chinese J Polym Sci 31(4):641–648

    Article  CAS  Google Scholar 

  52. Tripathi SK, Jain A, Gupita A, Mishra M (2012) Electrical and electrochemical studies on magnesium ion-based polymer gel electrolytes. J Solid State Electrochem 16(5):1799–1806

    Article  CAS  Google Scholar 

  53. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)-poly(acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  54. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based magnesium ion conducting polymer gel electrolytes. J Power Sources 187(2):627–634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh Prabhu.

Electronic supplementary material

ESM 1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponmani, S., Kalaiselvimary, J. & Ramesh Prabhu, M. Structural, electrical, and electrochemical properties of poly(vinylidene fluoride-co-hexaflouropropylene)/poly(vinyl acetate)-based polymer blend electrolytes for rechargeable magnesium ion batteries. J Solid State Electrochem 22, 2605–2615 (2018). https://doi.org/10.1007/s10008-018-3971-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3971-6

Keywords

Navigation