Skip to main content

Advertisement

Log in

Facile synthesis of hierarchical porous Li2FeSiO4/C as highly stable cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium iron silicate has caught tremendous attentions as an appealing cathode for future lithium-ion batteries due to high capacity, low cost, and environmental friendliness, and its drawback of extremely low conductivity can be overcome efficiently through nanoarchitecture building. However, the construction of nanostructures always involves with expensive surfactants and complicated synthetic processes, which restrict these methods from large-scale production. In this paper, we develop a simple synthetic route to prepare hierarchical porous Li2FeSiO4/C. XRD, SEM, TEM, Raman, and N2 adsorption-desorption are employed to investigate its physical properties. Electrochemical tests reveal that the composite delivers a high specific capacity of 243.5 mAh g−1, superior rate capability, and excellent cycling performance with capacity retention of 95.2% after 200 cycles. The excellent electrochemical performance should be attributed to the unique structure in which hierarchical pores provides fast transport channels for lithium ions and interconnected carbon coating builds up conductive networks to enhance the conductivity of Li2FeSiO4. In addition, electrochemical impedance spectroscopy, ex situ SEM, and TEM are conducted to demonstrate its structural stability upon long-term cycling. In addition, the route described in this work is facile, cheap, and easily scaled-up, which allows for extension to the fabrication of other energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443. https://doi.org/10.1021/cr5003003

    Article  CAS  Google Scholar 

  2. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591. https://doi.org/10.1021/cr3001862

    Article  CAS  Google Scholar 

  3. Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189. https://doi.org/10.1039/B916098A

    Article  CAS  Google Scholar 

  4. Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133(33):13031–13035. https://doi.org/10.1021/ja2018543

    Article  CAS  Google Scholar 

  5. Eames C, Armstrong AR, Bruce PG, Islam MS (2012) Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem Mater 24(11):2155–2161. https://doi.org/10.1021/cm300749w

    Article  CAS  Google Scholar 

  6. Hu L, Yang J, Amiinu IS, Kang X, Zhang W, Mu S (2015) Lithium storage properties of in situ synthesized Li2FeSiO4 and LiFeBO3 nanocomposites as advanced cathode materials for lithium ion batteries. J Mater Chem A 3(46):23368–23375. https://doi.org/10.1039/C5TA04588F

    Article  CAS  Google Scholar 

  7. Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas JO (2006) The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem 16(23):2266–2272. https://doi.org/10.1039/B601184E

    Article  Google Scholar 

  8. Sirisopanaporn C, Boulineau A, Hanzel D, Dominko R, Budic B, Armstrong AR, Bruce PG, Masquelier C (2010) Crystal structure of a new polymorph of Li2FeSiO4. Inorg Chem 49(16):7446–7451. https://doi.org/10.1021/ic100741x

    Article  CAS  Google Scholar 

  9. Tan R, Yang J, Zheng J, Wang K, Lin L, Ji S, Liu J, Pan F (2015) Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature. Nano Energy 16:112–121. https://doi.org/10.1016/j.nanoen.2015.06.016

    Article  CAS  Google Scholar 

  10. Du X, Zhao H, Lu Y, Gao C, Xia Q, Zhang Z (2016) Electrochemical properties of nanostructured Li2FeSiO4/C synthesized by a simple coprecipitation method. Electrochim Acta 188:744–751. https://doi.org/10.1016/j.electacta.2015.12.039

    Article  CAS  Google Scholar 

  11. Hörmann NG, Groß A (2013) Stability, composition and properties of Li2FeSiO4 surfaces studied by DFT. J Solid State Electr 18(5):1401–1413

    Article  Google Scholar 

  12. Masese T, Tassel C, Orikasa Y, Koyama Y, Arai H, Hayashi N, Kim J, Mori T, Yamamoto K, Kobayashi Y, Kageyama H, Ogumi Z, Uchimoto Y (2015) Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4. J Phys Chem C 119(19):10206–10211. https://doi.org/10.1021/acs.jpcc.5b00362

    Article  CAS  Google Scholar 

  13. Su D, Ahn H, Wang G (2011) Ab initio calculations on li-ion migration in Li2FeSiO4 cathode material with a P 21 symmetry structure. Appl Phys Lett 99(14):141909. https://doi.org/10.1063/1.3645617

    Article  Google Scholar 

  14. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  15. Zhang Y, Li Y, Xia X, Wang X, Gu C, Tu J (2015) High-energy cathode materials for li-ion batteries: a review of recent developments. Sci China Technol Sci 58(11):1809–1828. https://doi.org/10.1007/s11431-015-5933-x

    Article  CAS  Google Scholar 

  16. Islam MS, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong AR, Bruce PG (2011) Silicate cathodes for lithium batteries: alternatives to phosphates? J Mater Chem 21(27):9811–9818. https://doi.org/10.1039/c1jm10312a

    Article  CAS  Google Scholar 

  17. Nakano H, Dokko K, Koizumi S, Tannai H, Kanamura K (2008) Hydrothermal synthesis of carbon-coated LiFePO4 and its application to lithium polymer battery. J Electrochem Soc 155(12):A909–A914. https://doi.org/10.1149/1.2988048

    Article  CAS  Google Scholar 

  18. Xie HM, Wang RS, Ying JR, Zhang LY, Jalbout AF, HY Y, Yang GL, Pan XM, ZM S (2006) Optimized LiFePO4–Polyacene cathode material for lithium-ion batteries. Adv Mater 18(19):2609–2613. https://doi.org/10.1002/adma.200600578

    Article  CAS  Google Scholar 

  19. Nishimura SI, SH RK, Yashima M, Nakayama N (2008) Structure of Li2FeSiO4. J Am Chem Soc 130(40):13212–13213. https://doi.org/10.1021/ja805543p

    Article  CAS  Google Scholar 

  20. Zhang Z, Liu X, Wu Y, Zhao H (2014) Graphene modified Li2FeSiO4/C composite as a high performance cathode material for lithium-ion batteries. J Solid State Electr 19:469–475

    Article  Google Scholar 

  21. Yang J, Kang X, He D, Zheng A, Pan M, Mu S (2015) Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. J Mater Chem A 3(32):16567–16573. https://doi.org/10.1039/C5TA03874J

    Article  CAS  Google Scholar 

  22. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12(3):1146–1151. https://doi.org/10.1021/nl202681b

    Article  CAS  Google Scholar 

  23. Qiu H, Zhu K, Li H, Li T, Zhang T, Yue H, Wei Y, Du F, Wang C, Chen G, Zhang D (2015) Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87:365–373. https://doi.org/10.1016/j.carbon.2015.02.056

    Article  CAS  Google Scholar 

  24. Chen Z, Qiu S, Cao Y, Qian J, Ai X, Xie K, Hong X, Yang H (2013) Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J Mater Chem A 1(16):4988–4992. https://doi.org/10.1039/c3ta00611e

    Article  CAS  Google Scholar 

  25. Li D, Zhang W, Sun R, Yong HT, Chen G, Fan X, Gou L, Mao Y, Zhao K, Tian M (2016) Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries. Nano 8:12202–12214

    CAS  Google Scholar 

  26. Wu X, Wang X, Zhang Y (2013) Nanowormlike Li2FeSiO4-C composites as lithium-ion battery cathodes with superior high-rate capability. ACS Appl Mater Interfaces 5(7):2510–2516. https://doi.org/10.1021/am303047n

    Article  CAS  Google Scholar 

  27. Yang J, Hu L, Zheng J, He D, Tian L, Mu S, Pan F (2015) Li2FeSiO4 nanorods bonded with graphene for high performance batteries. J Mater Chem A 3(18):9601–9608. https://doi.org/10.1039/C5TA01529D

    Article  CAS  Google Scholar 

  28. Wu X, Jiang X, Huo Q, Zhang Y (2012) Facile synthesis of Li2FeSiO4/C composites with triblock copolymer P123 and their application as cathode materials for lithium ion batteries. Electrochim Acta 80:50–55. https://doi.org/10.1016/j.electacta.2012.06.122

    Article  CAS  Google Scholar 

  29. Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sources 198:229–235. https://doi.org/10.1016/j.jpowsour.2011.09.066

    Article  CAS  Google Scholar 

  30. Hung IM, Yang Y-C, H-J S, Zhang J (2015) Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery. Ceram Int 41:S779–S786. https://doi.org/10.1016/j.ceramint.2015.03.292

    Article  CAS  Google Scholar 

  31. Yang J, Kang X, Hu L, Gong X, He D, Peng T, Mu S (2013) Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries. J Alloy Compd 572:158–162. https://doi.org/10.1016/j.jallcom.2013.03.256

    Article  CAS  Google Scholar 

  32. Fu R, Li Y, Yang H, Zhang Y, Cheng X (2013) Improved performance of Li2FeSiO4/C composite with highly rough mesoporous morphology. J Electrochem Soc 160(5):A3048–A3053. https://doi.org/10.1149/2.009305jes

    Article  CAS  Google Scholar 

  33. Yang J, Kang X, Hu L, Gong X, Mu S (2014) Nanocrystalline-Li2FeSiO4 synthesized by carbon frameworks as an advanced cathode material for Li-ion batteries. J Mater Chem A 2(19):6870–6878. https://doi.org/10.1039/C3TA15111E

    Article  CAS  Google Scholar 

  34. Zhang LL, Duan S, Yang XL, Peng G, Liang G, Huang YH, Jiang Y, Ni SB, Li M (2013) Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. ACS Appl Mater Interfaces 5(23):12304–12309. https://doi.org/10.1021/am402434n

    Article  CAS  Google Scholar 

  35. Hao H, Wang JB, Liu JL, Huang T, Yu A (2012) Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries. J Power Sources 210:397–401. https://doi.org/10.1016/j.jpowsour.2011.11.066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key Research Program of China (No. 2016YFB0901501), the Research Project of State Grid Corporation of China (No. 521702160004), and the China Postdoctoral Science Foundation (2016M592383, 2017T100574) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxue Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Zhao, G., Ding, F. et al. Facile synthesis of hierarchical porous Li2FeSiO4/C as highly stable cathode materials for lithium-ion batteries. J Solid State Electrochem 22, 877–884 (2018). https://doi.org/10.1007/s10008-017-3827-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3827-5

Keywords

Navigation