Skip to main content
Log in

Ultra-thin and ultra-long α-MnO2 nanowires for pseudocapacitor material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Single phase, ultra-thin, and ultra-long α-MnO2 nanowires were synthesized by facile method and investigated as an electrochemical pseudocapacitor active material. Structural characterizations reveal that the α-MnO2 has a narrow size distribution of ˂5 nm and around 20–30 μm in length. A maximum specific capacitance of 495 F g−1 can be achieved at a scan rate of 2 mV s−1 by cyclic voltametrically. The α-MnO2 nanowires exhibit excellent electrochemical performance at various current densities and good cycling ability. These results indicate that the α-MnO2 nanowires are a promising candidate for the supercapacitor electrode active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang K, Han X, Hu Z (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728

    Article  Google Scholar 

  2. Chen Z, Jiao Z, Pan D et al (2012) Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem Rev 112:3833–3855

    Article  CAS  Google Scholar 

  3. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  Google Scholar 

  4. Singu BS, Hong SE, Yoon KR (2016) Chemical synthesis of sea-urchin shaped 3D-MnO<SUB>2</SUB> nano structures and their application in supercapacitors. J Nanosci Nanotechnol 16:6093–6101

    Article  CAS  Google Scholar 

  5. Ho C-L, Wu M-S (2011) Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high-performance supercapacitors. J Phys Chem C 115:22068–22074

    Article  CAS  Google Scholar 

  6. West WC, Myung NV, Whitacre JF, Ratnakumar BV (2004) Electrodeposited amorphous manganese oxide nanowire arrays for high energy and power density electrodes. J Power Sources

  7. Jiang H, Zhao T, Ma J et al (2011) Ultrafine manganese dioxidenanowire network for high-performance supercapacitors. Chem Commun 47:1264–1266

    Article  CAS  Google Scholar 

  8. Wei C, Pang H, Zhang B et al (2013) Two-dimensional β-MnO2 nanowire network with enhanced electrochemical capacitance. Sci Rep 3:2193

    Article  Google Scholar 

  9. Sung D-Y, Kim IY, Kim TW et al (2011) Room temperature synthesis routes to the 2D nanoplates and 1D nanowires/nanorods of manganese oxides with highly stable pseudocapacitance behaviors. J Phys Chem C 115:13171–13179

    Article  CAS  Google Scholar 

  10. Singu BS, Male U, Hong SE, Yoon KR (2016) Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics (Kiel) 22:1485–1491

    Article  CAS  Google Scholar 

  11. Sydulu Singu B, Srinivasan P, Yoon KR (2016) Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J Solid State Electrochem 20:3447–3457

    Article  CAS  Google Scholar 

  12. Ghodbane O, Pascal JL, Fraisse B, Favier F (2010) Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors. ACS Appl Mater Interfaces 2:3493–3505

    Article  CAS  Google Scholar 

  13. Singu BS, Yoon KR (2016) Porous 3D-β-nickel hydroxide microflowers for electrochemical supercapacitors. J Ind Eng Chem 33:374–380

    Article  CAS  Google Scholar 

  14. Yuan Z-Y, Zhang Z, Du G et al (2003) A simple method to synthesise single-crystalline manganese oxide nanowires. Chem Phys Lett. doi:10.1016/S0009-2614(03)01334-4

  15. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  16. Sydulu Singu B, Srinivasan P, Pabba S (2012) Benzoyl peroxide oxidation route to nano form polyaniline salt containing dual dopants for pseudocapacitor. J Electrochem Soc 159:A6–A13

    Article  CAS  Google Scholar 

  17. Pusawale SN, Deshmukh PR, Gunjakar JL, Lokhande CD (2013) SnO2-RuO2 composite films by chemical deposition for supercapacitor application. Mater Chem Phys 139:416–422

    Article  CAS  Google Scholar 

  18. Xia H, Xiao W, Lai MO, Lu L (2009) Facile synthesis of novel nanostructured MnO2 thin films and their application in supercapacitors. Nanoscale Res Lett 4:1035–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2010-0024478) and Hannam University research fund in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuk Ro Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singu, B.S., Hong, S.E. & Yoon, K.R. Ultra-thin and ultra-long α-MnO2 nanowires for pseudocapacitor material. J Solid State Electrochem 21, 3215–3220 (2017). https://doi.org/10.1007/s10008-017-3661-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3661-9

Keywords

Navigation