Skip to main content
Log in

A conductive crosslinked graphene/cytochrome c networks for the electrochemical and biosensing study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The direct electrochemistry of catalytically active cytochrome C (Cyt c) adsorbed together with a 3-dimensional network of chemically synthesized graphene on glassy carbon electrode has been readily obtained in aqueous phosphate buffer. Direct electrical communication between the redox center of Cyt c and the modified graphene-based electrode was established. The modified electrode was employed as a high-performance hydrogen peroxide (H2O2) biosensor. The Cyt c present in modified electrode exhibited a pair of quasi-reversible redox peaks with a midpoint potential of −0.380 and −0.2 V, cathodic and anodic, respectively. Investigations into the electrocatalytic activity of the modified electrode upon hydrogen peroxide exposure revealed a rapid amperometric response (5 s). Under optimized conditions, the linear range of response to H2O2 concentration ranged from 5 × 10−7 to 2 × 10−4 M with a detection limit of 2 × 10−7 M at a signal-to-noise ratio of 3. The stability, reproducibility, and selectivity of the proposed biosensor are discussed in relation to the morphology and composition of the modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baby TT, Aravind S, Arockiadoss T, Rakhi R, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sensors Actuators B Chem 145:71–77S

    Article  CAS  Google Scholar 

  2. Attar A, Aguilera LC, Rodríguez IN, Cisneros JLHH, Santander JMP, Amine A (2015) Amperometric inhibition biosensors based on horseradish peroxidase and gold nonanoparticles immobilized onto different electrodes for cyanide measurements. Bioelectrochemistry 101:84–91

    Article  CAS  Google Scholar 

  3. Kafi AKM, Lee D-Y, Park S-H, Kwon Y-S (2007) Development of a peroxide biosensor made of a thiolated-viologen and hemoglobin-modified gold electrode. Microchem J 85:308–313

    Article  CAS  Google Scholar 

  4. Liu H, Guo K, Duan C, Chen X, Zhu Z (2016) A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi2WO6 microspheres. Mater Sci Eng, C 64:243–248

    Article  CAS  Google Scholar 

  5. Kafi AKM, Asieh A, Wang J, Thomas DF, Chen A (2010) Direct growth of nanoporous Au and its application in electrochemical biosensing. Biosens Bioelectron 25:2458–2463

    Article  CAS  Google Scholar 

  6. Gulaboski R, Markovski V, Jihe Z (2016) Redox chemistry of coenzyme Q—a short overview of the voltammetric features. J Solid State Electrochem 20:3229–3238

    Article  CAS  Google Scholar 

  7. Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 23:128–134

    Article  CAS  Google Scholar 

  8. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  9. Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Buckmann AF, Heller A (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118:10321–10322

    Article  CAS  Google Scholar 

  10. Kafi AKM, Chen A (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79:97–102

    Article  CAS  Google Scholar 

  11. Rahman MA, Kothalam A, Choe ES, Won MS, Shim YB (2012) Stability and sensitivity enhanced electrochemical in vivo superoxide microbiosensor based on covalently co-immobilized lipid and cytochrome c. Anal Chem 84:6654–6660

    Article  CAS  Google Scholar 

  12. Yang YL, Unnikrishnan B, Chen SM (2011) Immobilization of cytochrome c on multi-walled carbon nanotube-poly (vinysulfonic acid) composite film and its application for amperometric determination of H2O2. Int J Electrochem Sci 6:3743–3753

    CAS  Google Scholar 

  13. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  14. Liang B, Fang L, Yang G, Hua YC, Guo XS, Ye XS (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl grapheme. Biosens Bioelectron 43:131–136

    Article  CAS  Google Scholar 

  15. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  16. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  17. Filip J, Tkac J (2014) Is graphene worth using in biofuel cells? Electrochim. Acta 136:340–354

    CAS  Google Scholar 

  18. Hong B, Cheng Q (2012) Sensitive voltammetric determination of mitoxantrone by using CS-dispersed graphene modified glassy carbon electrodes. Adv Chem Eng Sci 2:453–460

    Article  CAS  Google Scholar 

  19. Alwarappan S, Joshi RK, Ram MK, Kumar A (2010) Electron transfers mechanism of cytochrome c at graphene electrode. Appl Phys Lett 96:263702

    Article  Google Scholar 

  20. Aslan S, Anik U (2016) Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta 183:73–81

    Article  CAS  Google Scholar 

  21. Zhang F, Zheng B, Zhang J, Huang X, Liu H, Guo S, Zhang J (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114:8469–8473

    Article  CAS  Google Scholar 

  22. Zhang YQ, Fan YJ, Wang SS, Tan YL, Shen XC, Shi ZJ (2012) Facile fabrication of a graphene-based electrochemical biosensor for glucose detection. Chin J Chem 30:1163–1167

    Article  CAS  Google Scholar 

  23. Zeng Q, Cheng J, Tang L, Liu X, Liu Y, Li J, Jiang J (2010) Self-assembled graphene–enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20:3366–3372

    Article  CAS  Google Scholar 

  24. Chhabra VA, Deep A, Kaur R, Kumar R (2012) Functionalization of graphene using carboxylation process. International Journal for Science and Emerging Technologies with Latest Trends 4(1):13–19

    Google Scholar 

  25. Choucair M, Thordarson P, Stride JA (2008) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33

    Article  Google Scholar 

  26. Caffrey MS, Daldal F, Holden HM, Cusanovich MA (1991) Importance of a conserved hydrogen-bonding network in cytochromes c to their redox potentials and stabilities. Biochemistry 30:4119–4125

    Article  CAS  Google Scholar 

  27. Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571

    Article  CAS  Google Scholar 

  28. Kafi AKM, Crossley MJ (2013) Synthesis of a conductive network of crosslinked carbon nanotube/hemoglobin on a thiol-modified Au surface and its application to biosensing. Biosens Bioelectron 42:273–279

    Article  CAS  Google Scholar 

  29. Bai J, Wu L, Wang X, Zhang HM (2015) Hemoglobin-graphene modified carbon fiber microelectrode for direct electrochemistry and electrochemical H2O2 sensing. Electrochim Acta 185:142–147

    Article  CAS  Google Scholar 

  30. An N, Zhou CH, Zhuang XY, Tong DS, Yu WH (2015) Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl Clay Sci 114:283–296

    Article  CAS  Google Scholar 

  31. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983–988

    Article  CAS  Google Scholar 

  32. Zhihui D, Songqin L, Huangxian J (2004) Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing, Electrochim. Acta 49:2139–2144

    Google Scholar 

  33. Zhang N, Lv X, Ma W, Hu Y, Li F, Han D, Niu L (2013) Direct electron transfer of cytochrome c at mono-dispersed and negatively charged perylene–graphene matrix. Talanta 107:195–202

    Article  CAS  Google Scholar 

  34. Feng JJ, Zhao G, Xu JJ, Chen HY (2013) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 342:280–286

    Article  Google Scholar 

  35. Zhao GC, Yin ZZ, Zhang L, Wei XW (2005) Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Elelctrochem Commun 7:256–260

    Article  CAS  Google Scholar 

  36. Zhang L, Han G, Liu Y, Tang J, Tang W (2014) Immobilizing haemoglobin on gold/graphene–chitosan nanocomposite as efficient hydrogen peroxide biosensor. Sensors Actuators B Chem 197:164–171

    Article  CAS  Google Scholar 

  37. Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S (2010) A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochim Acta 55:3055–3060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FRGS) of Malaysia (RDU140122). A.K.M. Kafi acknowledges the Henry Bertie and Florence Mabel Gritton Postdoctoral Fellowship, The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Kafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafi, A.K.M., Yusoff, M.M., Choucair, M. et al. A conductive crosslinked graphene/cytochrome c networks for the electrochemical and biosensing study. J Solid State Electrochem 21, 2761–2767 (2017). https://doi.org/10.1007/s10008-017-3598-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3598-z

Keywords

Navigation