Skip to main content
Log in

Synthesis and supercapacitive performance of CuO/Cu2O nanosheet arrays modified by hydrothermal deposited NiOOH

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Binder-free, high-performance electrode materials play a critical role for supercapacitors. In this paper, through the electrochemical anodization process, ordered CuO/Cu2O nanosheet arrays (NSAs) were successfully in situ fabricated on copper foil, which could be directly adopted as the current collector. Then, NiOOH was introduced for the further modification of CuO/Cu2O arrays via a facile hydrothermal deposition treatment using nickel nitrate as precursor. The as-fabricated NiOOH@CuO/Cu2O composite nanosheet arrays exhibit an excellent areal capacitance of 1206 mF cm−2 at a current density of 1 mA cm−2 in 2 M KOH aqueous solution with an outstanding long-term cycling stability, with 84.6% of initial capacitance after 3000 charge/discharge cycles. The facile, cost-effective, and controllable fabrication route and the robust supercapacitive activity suggest that the NiOOH@CuO/Cu2O composite nanosheet arrays could be a promising candidate electrode material for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brousse T, Belanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189

    Article  CAS  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    Article  CAS  Google Scholar 

  3. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 43(18):797–828

    Article  Google Scholar 

  4. Lu WJ, Liu MX, Miao L, Zhu DH, Wang X, Duan H, Wang ZW, Li LC, Xu ZJ, Gan LH, Chen LW (2016) Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochim Acta 205:132–141

    Article  CAS  Google Scholar 

  5. Zhu DZ, Wang YW, Lu WJ, Zhang H, Song ZY, Luo D, Gan LH, Liu MX, Sun DM (2017) A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon 111:667–674

    Article  CAS  Google Scholar 

  6. Wu NL, Kuo SL, Lee MH (2002) Preparation and optimization of RuO2 impregnated SnO2 xerogel supercapacitor. J Power Sources 104(1):62–65

    Article  CAS  Google Scholar 

  7. Sun ZP, Firdoz S, Yap EY, Li L, Lu XM (2013) Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5(10):4379–4386

    Article  CAS  Google Scholar 

  8. Dongale TD, Jadhav PR, Navathe GJ, Kim JH, Karanjkar MM, Patil PS (2015) Development of nano fiber MnO2 thin film electrode and cyclic voltammetry behavior modeling using artificial neural network for supercapacitor application. Mater Sci Semicond Process 36:43–48

    Article  CAS  Google Scholar 

  9. Tang CL, Wei X, Jiang YM, Wu XY, Han LN, Wang KX, Chen JS (2015) Cobalt-doped MnO2 hierarchical yolk-shell spheres with improved supercapacitive performance. J Phys Chem C 119(16):8465–8471

    Article  CAS  Google Scholar 

  10. Cui JW, Zhang XY, Tong L, Luo JB, Wang Y, Zhang Y, Xie K, Wu YC (2015) A facile synthesis of mesoporous Co3O4/CeO2 hybrid nanowire arrays for high performance supercapacitors. J Mater Chem A 3(19):10425–10431

    Article  CAS  Google Scholar 

  11. Yang Y, Kim D, Yang M, Schmuki P (2011) Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. Chem Commun 47(27):7746–7748

    Article  CAS  Google Scholar 

  12. Liu XM, Zhang XG, Fu SY (2006) Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater Res Bull 41(3):620–627

    Article  CAS  Google Scholar 

  13. Iwueke DC, Amaechi CI, Nwanya AC, Ekwealor ABC, Asogwa PU, Osuji RU, Maaza M, Ezema FI (2015) A novel chemical preparation of Ni(OH)2/CuO nanocomposite thin films for supercapacitive applications. J Mater Sci Mater Electron 26(4):2236–2242

    Article  CAS  Google Scholar 

  14. Liu LM, Yang WY, Sun WZ, Li Q, Shang JK (2015) Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl Mater Interfaces 7(3):1465–1476

    Article  CAS  Google Scholar 

  15. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134(10):4905–4917

    Article  CAS  Google Scholar 

  16. Kargar A, Partokia SS, Niu MT, Allameh P, Yang M, May S, Cheung JS, Sun K, Xu K, Wang D (2014) Solution-grown 3D Cu2O networks for efficient solar water splitting. Nanotech 25(20):205401 (9pp)

    Article  Google Scholar 

  17. Li YH, Chang S, Liu XL, Huang JC, Yin JL, Wang GL, Cao DX (2012) Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 85(4):393–398

    Article  CAS  Google Scholar 

  18. Zhang YX, Huang M, Li F, Wen ZQ (2013) Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int J Electrochem Sci 8(6):8645–8661

    CAS  Google Scholar 

  19. Huang M, Li F, Zhang YX, Li B, Gao X (2014) Hierarchical NiO nanoflake coated CuO flower core–shell nanostructures for supercapacitor. Ceram Int 40(4):5533–5538

    Article  CAS  Google Scholar 

  20. Fan Y, Liu PF, Yang ZJ (2015) CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors. Ionics 21(1):185–190

    Article  CAS  Google Scholar 

  21. Dong CQ, Wang Y, Xu JL, Chen GH, Yang WF, Kou TY, Zhang ZH, Ding Y (2014) 3D binder-free Cu2O@Cu nanoneedle arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2(43):18299–18235

    Article  Google Scholar 

  22. Kuang M, Li TT, Chen H, Zhang SM, Zhang LL, Zhang YX (2015) Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties. Nanotech 26(30):304002 (9pp)

    Article  Google Scholar 

  23. Yan XY, Tong XL, Wang J, Gong CW, Zhang MG, Liang LP (2013) Rational synthesis of hierarchically porous NiO hollow spheres and their supercapacitor application. Mater Lett 95(3):1–4

    Article  CAS  Google Scholar 

  24. Liu MX, Wang X, Zhu DZ, Li LC, Duan H, Xu ZJ, Wang ZW, Gan LH (2017) Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chem Eng J 308:240–247

    Article  CAS  Google Scholar 

  25. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22(3):347–351

    Article  CAS  Google Scholar 

  26. Jiang H, Li CZ, Sun T, Ma J (2012) High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chem Commun 48(20):2606–2608

    Article  CAS  Google Scholar 

  27. Stern LA, Hu X (2014) Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discuss 176:363–379

    Article  CAS  Google Scholar 

  28. Deabate S, Henn F (2005) Structural modifications and electrochemical behaviour of the β(II)-Ni(OH)2/β(III)-NiOOH redox couple upon galvanostatic charging/discharging cycling. Electrochim Acta 50(14):2823–2835

    Article  CAS  Google Scholar 

  29. Pan JQ, Sun YZ, Wan PY, Wang ZH, Liu XG (2005) Synthesis, characterization and electrochemical performance of battery grade NiOOH. Electrochem Commun 7(8):857–862

    Article  CAS  Google Scholar 

  30. Yuan YF, Xia XH, Wu JB, Yang JL, Chen YB, Guo SY (2011) Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim Acta 56(6):2627–2632

    Article  CAS  Google Scholar 

  31. Zhang YX, Kuang M, Wang JJ (2014) Mesoporous CuO-NiO micropolyhedrons: facile synthesis, morphological evolution and pseudocapcitive performance. CrystEng Comm 16(3):492–498

    Article  CAS  Google Scholar 

  32. Wang K, Zhao CJ, Min SD, Qin XZ (2015) Facile synthesis of Cu2O/RGO/Ni(OH)2 nanocomposite and its double synergistic effect on supercapacitor performance. Electrochim Acta 165:314–322

    Article  CAS  Google Scholar 

  33. He D, Xing SX, Sun BN, Cai H, Suo H, Zhao C (2016) Design and construction of three-dimensional flower-like CuO hierarchical nanostructures on copper foam for high performance supercapacitor. Electrochim Acta 210:639–645

    Article  CAS  Google Scholar 

  34. Zhao JB, Shu X, Wang Y, Yu CP, Zhang JF, Cui JW, Qin YQ, Zheng HM, Liu JQ, Zhang Y, Wu YC (2016) Construction of CuO/Cu2O@CoO core shell nanowire arrays for high-performance supercapacitors. Surf Coat Technol 299:15–21

    Article  CAS  Google Scholar 

  35. Hosseini SG, Abazari R (2015) A facile one-step route for production of CuO, NiO, and CuO-NiO nanoparticles and comparison of their catalytic activity for ammonium perchlorate decomposition. RSC Adv 5(117):96777–96784

    Article  CAS  Google Scholar 

  36. Sun YZ, Pan JQ, Wan PY, Xu CC, Liu XG (2007) Electrolytic preparation, structure characterization and electrochemical performance of NiOOH. Chin J Chem Eng 15(2):262–267

    Article  CAS  Google Scholar 

  37. Ratcliff EL, Meyer J, Steirer KX, Garcia A, Berry JJ, Ginley DS, Olson DC, Kahn A, Armstrong NR (2011) Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics. J Chem Mater 23(22):4988–5000

    Article  CAS  Google Scholar 

  38. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2(6):1319–1324

    Article  CAS  Google Scholar 

  39. Mao YC, He JT, Sun XF, Li W, Lu XH, Gan JY, Liu ZQ, Gong L, Chen J, Liu P, Tong YX (2012) Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim Acta 62(1):1–7

    Article  CAS  Google Scholar 

  40. Yu Y, Shi Y, Chen CH (2007) Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability. Nanotech 18(5):2341–2346

    Article  Google Scholar 

  41. Wang P, Ng YH, Amal R (2013) Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 5(7):2952–2958

    Article  CAS  Google Scholar 

  42. Mansour AN, Melendres CA (1994) Characterization of electrochemically prepared γ-NiOOH by XPS. Surf Sci Spectra 3(3):271–278

    Article  CAS  Google Scholar 

  43. Elshahawy AM, Ho KH, Hu Y, Fan Z, Hsu YWB, Guan C, Ke QQ, Wang J (2016) Microwave-assisted hydrothermal synthesis of nanocrystal β-Ni(OH)2 for supercapacitor applications. CrystEng Comm 18(18):3256–3264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51272062, 51302060, 51372063, 51502071, 51402078), the Specialized Research Fund for the Doctoral Program of Higher Education (20130111120019), the Natural Science Foundation of Anhui Province (1508085ME97, 1608085QE105), and the Fundamental Research Funds for the Central Universities (Chunhua Project JZ2015HGCH0150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Qin or Yucheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, X., Wang, Y., Qin, Y. et al. Synthesis and supercapacitive performance of CuO/Cu2O nanosheet arrays modified by hydrothermal deposited NiOOH. J Solid State Electrochem 21, 1489–1497 (2017). https://doi.org/10.1007/s10008-017-3513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3513-7

Keywords

Navigation