Skip to main content

Advertisement

Log in

A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Biomass-derived carbon (BMC) materials have attracted much attention due to their high performance and properties of abundant source. Herein, biomass carbon sheets (BMCS) from wheat straws had been successfully synthesized via a facile high temperature carbonization and expansion processes. The morphology of BMCS keeps the natural honeycomb-like shape of the cross section and the hollow tubular array structure of the vertical section with rich pores, which provides low-resistant ion channels to support fast diffusion. The (002) crystal plane reveals that the intercalation distance of carbon sheets is 0.383 nm larger than that graphite (0.335 nm), which benefits the larger sodium ion de/intercalation. By comparing different carbonization temperatures, wheat straws carbonized at 1200 °C (BMCS-1200) with well graphite microcrystallites show more excellent sodium ion storage performance than that of 900 °C (BMC-900). BMCS-1200 shows a stable reversible capacity of 221 mAh g−1 after 200 cycles at 0.05 A g−1, while BMC-900 is 162 mAh g−1 after 100 cycles. And it also exhibits better rate capability (220, 109 mAh g−1) than that of BMC-900 (125, 77 mAh g−1) at 0.2 and 1 A g−1, respectively. Finally, it delivers 89 mAh g−1 stable capacity after 1400 cycles at 1 A g−1 to prove its excellent long-term cycling stability.

High temperature carbon sheets with well graphite microcrystallites synthesized from wheat straw forexcellent sodium ion storage performance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266

    Article  Google Scholar 

  2. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  3. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  4. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Fun Mater 23:947–958

    Article  CAS  Google Scholar 

  5. Xie X, Kretschmer K, Zhang J, Sun B, Su D, Wang G (2015) Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13:208–217

    Article  CAS  Google Scholar 

  6. Dai KH, Zhao H, Wang ZH, Song XY, Vince B, Liu G (2014) Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries. J Power Sources 263:276–279

    Article  CAS  Google Scholar 

  7. Srirama H, Kuppan S, Vishwanathan R, Palani B (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. PCCP 15:2945–2953

    Article  Google Scholar 

  8. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    Article  CAS  Google Scholar 

  9. Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110

    Article  CAS  Google Scholar 

  10. Luo XF, Yang CH, Peng YY, NW P, Ger MD, Hsieh CT, Chang JK (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3:10320–10326

    Article  CAS  Google Scholar 

  11. Zhu JD, Chen C, Lu Y, Ge YQ, Jiang H, Fu K, Zhang XW (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94:189–195

    Article  CAS  Google Scholar 

  12. Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen Y, Xie A, SH Y (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7:4095–4103

    Article  CAS  Google Scholar 

  13. GY X, Han JP, Ding B, Nie P, Pan J, Dou H, Li HS, Zhang XG (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674

    Article  Google Scholar 

  14. Jun L, Peter K, Aken PA, Van JM, Yan Y (2015) Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem 54:9632–9636

    Article  Google Scholar 

  15. Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129

    Article  CAS  Google Scholar 

  16. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  17. Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6:56–60

    Article  Google Scholar 

  18. Yang T, Qian T, Wang MF, Liu J, Zhou JQ, Sun ZZ, Chen MZ, Yan CL (2015) A new approach towards the synthesis of nitrogen-doped graphene/MnO2 hybrids for ultralong cycle-life lithium ion batteries. J Mater Chem A 3:6291–6296

    Article  CAS  Google Scholar 

  19. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28:190–198

    Article  CAS  Google Scholar 

  20. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  21. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

  22. Fey TK, Lee DC, Lin YY, Kumar TP (2003) High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synth Met 139:71–80

    Article  CAS  Google Scholar 

  23. Smith AJ, MacDonald MJ, Ellis LD, Obrovac MN, Dahn JR (2012) A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. Carbon 50:3717–3723

    Article  CAS  Google Scholar 

  24. Marta S, Fuertes AB (2014) Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8:5069–5078

    Article  Google Scholar 

  25. Shao YY, Zhang S, Engelhard MH, Li GS, Shao GC, Wang Y, Liu J, Aksay IA, Lin YH (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496

    Article  CAS  Google Scholar 

  26. Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir ACS J Surf Colloids 25:5957–5968

    Article  CAS  Google Scholar 

  27. CY S, YP X, Zhang WJ, Zhao JW, Tang XH, Tsai CH, Li LJ (2009) Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem Mater 21:5674–5680

    Article  Google Scholar 

  28. Bommier C, Luo W, Gao W-Y, Greaney A, Ma S, Ji X (2014) Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 76:165–174

    Article  CAS  Google Scholar 

  29. Cao YL, Xiao LF, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie ZM, Saraf LV, Yang ZG, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  CAS  Google Scholar 

  30. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  31. Wang LP, Yu L, Wang X, Srinivasan M, ZJ X (2015) Recent developments of electrode materials for sodium ion batteries. J Mater Chem A 3:9353–9378

    Article  CAS  Google Scholar 

  32. Prabakar SJR, Jeong J, Pyo M (2015) Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim Acta 161:23–31

    Article  CAS  Google Scholar 

  33. Li DD, Zhang L, Chen HB, Ding LX, Wang SQ, Wang HH (2015) Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem Commun 51:16045–16048

    Article  CAS  Google Scholar 

  34. Luo XF, Yang CH, Peng YY, Pu NW, Ger MD, Hsieh CT, Chang JK (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mate Chem A 3:10320–10326

    Article  CAS  Google Scholar 

  35. Saravanan KR, Mullaivananathan V, Kalaiselvi N (2015) Dual hetero atom containing bio-carbon: multifunctional electrode material for high performance sodium-ion batteries and oxygen reduction reaction. Electrochim Acta 176:670–678

    Article  CAS  Google Scholar 

  36. LM W, Buchholz D, Vaalma C, Giffin GA, Passerini S (2016) Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. Chemelectrochem 3:292–298

    Article  Google Scholar 

  37. Fonseca WS, Meng XH, Deng D (2015) Trash to treasure: transforming waste polystyrene cups into negative electrode materials for sodium ion batteries. ACS Sustain Chem Eng 3:2153–2159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the Yancheng City Cooperative Innovation Fund Project (No. YKA201219), the Natural Science Foundation of Jiangsu Province, China (No. BK20141261), and the joint research project among industry and university as well as institute of Jiangsu Province, China (No. BY2015057-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Electronic supplementary material

ESM 1

(DOC 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Chen, S. A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. J Solid State Electrochem 21, 1305–1312 (2017). https://doi.org/10.1007/s10008-016-3485-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3485-z

Keywords

Navigation