Skip to main content
Log in

Facile preparation of hierarchical porous carbons for supercapacitors by direct carbonization of potassium humate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple, cost-effective, and environmentally friendly strategy for the preparation of porous carbons for supercapacitors via direct carbonization of potassium humate is presented. The porous carbons obtained from leonardite potassium humate (denoted as LPC) and biotechnology potassium humate (denoted as BPC) showed macro-meso-micro hierarchical porous structure, moderate surface area (668 m2 g−1 for LPC and 604 m2 g−1 for BPC) and were enriched in oxygen-containing functional groups on the surface. These porous carbons applied as electrode materials for supercapacitors exhibited an excellent capacitive behavior in basic, acid, and neutral aqueous electrolytes. The respective specific capacitances for LPC and BPC were 223 and 200 F g−1 at current density of 50 mA g−1, and 175 and 151 F g−1 at current density of 2.5 A g−1 in a 3 M KOH electrolyte. Moreover, the porous carbons had high area specific capacitance (up to 33.4 μF cm−2), superior cycling performance, and low resistance. This work demonstrates a promising preparation route for large-scale production of hierarchical porous carbons for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo M, Dou YY, Hui K, Ma YH, Ding XY, Liang B, Ma BJ, Li L (2015) A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J Solid State Electrochem 19:1621–1631

    Article  CAS  Google Scholar 

  2. Xing BL, Guo H, Chen LJ, Chen ZF, Zhang CX, Huang GX, Xie W, Yu JL (2015) Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Process Technol 138:734–742

    Article  CAS  Google Scholar 

  3. Zhong S, Zhan CX, Cao DP (2015) Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85:51–59

    Article  CAS  Google Scholar 

  4. Zhong CG, Gong SL, Jin LE, Li P, Cao Q (2015) Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors. Mater Lett 156:1–6

    Article  CAS  Google Scholar 

  5. Ma GF, Zhang ZG, Peng H, Sun KJ, Ran FT, Lei ZQ (2016) Facile preparation of nitrogen-doped porous carbon for high performance symmetric supercapacitor. J Solid State Electrochem. doi:10.1007/s10008-016-3171-1

    Google Scholar 

  6. Zhao QL, Wang XY, Liu J, Wang H, Zhang YW, Gao J, Lu Q, Zhou HY (2015) Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochim Acta 154:110–118

    Article  CAS  Google Scholar 

  7. Lv YK, Gan LH, Liu MX, Xiong W, Xu ZJ, Zhu DZ, Wright DS (2012) A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J Power Sources 209:152–157

    Article  CAS  Google Scholar 

  8. Qiao ZJ, Chen MM, Wang CY, Yuan Y (2014) Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresource Technol 163:386–389

    Article  CAS  Google Scholar 

  9. Hao P, Zhao ZH, Tian J, Li HD, Sang YH, Yu GW, Cai HQ, Liu H, Wong CP, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    Article  CAS  Google Scholar 

  10. Wang Q, Yan J, Wang YB, Wei T, Zhang ML, Jing XY, Fan ZJ (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

    Article  CAS  Google Scholar 

  11. Geng WD, Ma FW, Wu G, Song SJ, Wan JF, Ma D (2016) MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochim Acta 191:854–863

    Article  CAS  Google Scholar 

  12. Hong XT, Hui KS, Zeng Z, Hui KN, Zhang LJ, Mo MY, Li M (2014) Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochim Acta 130:464–469

    Article  CAS  Google Scholar 

  13. Zhang WL, Zhao MZ, Liu RY, Wang XF, Lin HB (2015) Hierarchical porous carbon derived from lignin for high performancesupercapacitor. Colloid Surface A 484:518–527

    Article  CAS  Google Scholar 

  14. Gao Y, Zhang WL, Yue QY, Gao BY, Sun YY, Kong JJ, Zhao P (2014) Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. J Power Sources 270:403–410

    Article  CAS  Google Scholar 

  15. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energ Environ Sci 7:1250–1280

    Article  CAS  Google Scholar 

  16. Lozano-Castelló D, Calo JM, Cazorla-Amorós D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45:2529–2536

    Article  Google Scholar 

  17. Ferrero GA, Sevilla M, Fuertes AB (2015) Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon 88:239–251

    Article  CAS  Google Scholar 

  18. Xu B, Zheng DF, Jia MQ, Cao GP, Yang YS (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182

    Article  CAS  Google Scholar 

  19. Xu B, Duan H, Chu M, Cao GP, Yang YS (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 1:4565–4570

    Article  CAS  Google Scholar 

  20. Yan K, Kong LB, Shen KW, Dai YH, Shi M, Hu B, Luo YC, Kang L (2016) Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors. Appl Surf Sci 364:850–861

    Article  CAS  Google Scholar 

  21. Imbufe AU, Patti AF, Burrow D, Surapaneni A, Jackson WR, Milner AD (2005) Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma 125:321–330

    Article  CAS  Google Scholar 

  22. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energ Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  23. Yin J, Zhang DY, Zhao JQ, Wang XL, Zhu H, Wang CY (2014) Meso- and micro- porous composite carbons derived from humic acid for supercapacitors. Electrochim Acta 136:504–512

    Article  CAS  Google Scholar 

  24. Yu HR, Cho S, Jung MJ, Lee YS (2013) Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid. Micropor Mesopor Mat 172:131–135

    Article  CAS  Google Scholar 

  25. Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40:667–674

    Article  CAS  Google Scholar 

  26. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources 158:1510–1516

    Article  CAS  Google Scholar 

  27. Huang GX, Kang WW, Xing BL, Chen LJ, Zhang CX (2016) Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Process Technol 142:1–5

    Article  CAS  Google Scholar 

  28. Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18:1877–1882

    Article  Google Scholar 

  29. Ning GQ, Fan ZJ, Wang G, Gao JS, Qian WZ, Wei F (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun 47:5976–5978

    Article  CAS  Google Scholar 

  30. Yu PP, Li YZ, Zhao X, Wu LH, Zhang QH (2013) In situ growth of ordered polyaniline nanowires on surfactant stabilized exfoliated graphene as high-performance supercapacitor electrodes. Synthetic Met 185-186:89–95

    Article  CAS  Google Scholar 

  31. Huang YX, Candelaria SL, Li YW, Li ZM, Tian JJ, Zhang LL, Cao GZ (2014) Sulfurized activated carbon for high energy density supercapacitors. J Power Sources 252:90–97

    Article  CAS  Google Scholar 

  32. Cai TW, Zhou M, Ren DY, Han GS, Guan SY (2013) Highly ordered mesoporous phenoleformaldehyde carbon as supercapacitor electrode material. J Power Sources 231:197–202

    Article  CAS  Google Scholar 

  33. Hao JN, Liao YQ, Zhong YY, Shu D, He C, Guo ST, Huang YL, Zhong J, Hu LL (2015) Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon 94:879–887

    Article  CAS  Google Scholar 

  34. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51404098, U1361119, 51174077), the International Science and Technology Cooperation Project of Henan province (152102410047) and program for Innovative Research Team (in Science and Technology) in the University of Henan Province (16IRTSTHN005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangxu Huang or Chuanxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, B., Huang, G., Chen, Z. et al. Facile preparation of hierarchical porous carbons for supercapacitors by direct carbonization of potassium humate. J Solid State Electrochem 21, 263–271 (2017). https://doi.org/10.1007/s10008-016-3360-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3360-y

Keywords

Navigation