Skip to main content
Log in

Activated hierarchical porous carbon@π-conjugated polymer composite as cathode for high-performance lithium storage

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Organic compounds become promising candidates for cathodes of rechargeable lithium battery (RLB) due to the high theoretical capacity and improved safety. However, they exhibit low conductivity and easy dissolution in electrolyte, which leads to the low utilization of active materials and poor cycling stability of RLBs. Here, we synthesize a novel composite of activated hierarchical porous carbon supporting poly(1,5-diamino-anthraquinone) (aHPC@PDAA), using Ce(SO4)2 as oxidant and naphthalenesulfonic acid (NSA) as soft template for PDAA. The as-synthesized composite exhibits uniformly nanoporous structure with nano-sized PDAA particles distributed homogenously inside and outside of pores. The aHPC@PDAA cathode for RLBs achieves high electrochemical performance with a discharge capacity as much as 250 mAh g−1 at the current density of 100 mA g−1, which still maintains 176 mAh g−1 after 2000 charging-discharging cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang H, Yu X, Meng H, Dou P, Ma D, Xu X (2015) J Mater Sci 16:5504–5513

    Article  Google Scholar 

  2. Wang C, Ma X, Cheng J, Sun J, Zhou Y (2006) J Solid State Electrochem 3:361–364

    Article  Google Scholar 

  3. Ramesh-Kumar P, Venkateswarlu M, Satyanarayana N (2012) J Appl Electrochem 3:163–167

    Article  Google Scholar 

  4. Chen M, Xia X, Yuan J, Yin J, Chen Q (2015) J Power Sources 288:145–149

    Article  CAS  Google Scholar 

  5. Ramar V, Balaya P (2016) J Power Sources 306:552–558

    Article  CAS  Google Scholar 

  6. Xu F, Chen X, Tang Z, Wu D, Fu R, Jiang D (2014) Chem Commun 37:4788–4790

    Article  Google Scholar 

  7. Tsutsumi H, Yamashita S, Oishi T (1997) J Appl Electrochem 4:477–481

    Article  Google Scholar 

  8. Liang Y, Tao Z, Chen J (2012) Adv Energy Mater 7:742–769

    Article  Google Scholar 

  9. Luo C, Huang R, Kevorkyants R, Pavanello M, He H, Wang C (2014) Nano Lett 3:1596–1602

    Article  Google Scholar 

  10. Qiu H, Wan M, Matthews B, Dai L (2001) Macromolecules 4:675–677

    Article  Google Scholar 

  11. Kato M, Senoo KI, Yao M, Misaki Y (2014) J Mater Chem A 2:6747–6754

    Article  CAS  Google Scholar 

  12. Zhang K, Hu Z, Tao Z, Chen J (2014) Sci China Mater 1:42–58

    Article  Google Scholar 

  13. Gottis S, Barres AL, Dolhem F, Poizot P (2014) ACS Appl Mater Interfaces 14:10870–10876

    Article  Google Scholar 

  14. Su C, Yang F, Ji L, Xu L, Zhang C (2014) J Mater Chem A 2:20083–20088

    Article  CAS  Google Scholar 

  15. Zeng RH, Li XP, Qiu YC, Li WS, Yi J, Lu DS, Tan CL, Xu MQ (2010) Electrochem Commun 9:1253–1256

    Article  Google Scholar 

  16. Chen J, Zhang Q, Zeng M, Ding N, Li Z, Zhong S, Zhang T, Wang S, Yang G (2016) J Solid State Electrochem. Doi:10.1007/s10008–016–3126-6

  17. Xie J, Wang Z, Gu P, Zhao Y, Xu ZJ, Zhang Q (2016) Sci China Mater 1:6–11

    Article  Google Scholar 

  18. Iordache A, Maurel V, Mouesca JM, Pécaut J, Dubois L, Gutel T (2014) J Power Sources 267:553–559

    Article  CAS  Google Scholar 

  19. Yokoji T, Matsubara H, Satoh M (2014) J Mater Chem A 2:19347–19354

    Article  CAS  Google Scholar 

  20. Naoi K, Suematsu S, Hanada M, Takenouchi H (2002) J Electrochem Soc 4:A472–A477

    Article  Google Scholar 

  21. Wan W, Lee H, Yu X, Wang C, Nam KW, Yang XQ, Zhou H (2014) RSC Adv 38:19878–19882

    Article  Google Scholar 

  22. Suematsu S, Naoi K (2001) J Power Sources 97-98:816–818

    Article  CAS  Google Scholar 

  23. Song Z, Zhou H (2013) Energy Environ Sci 6:2280–2301

    Article  CAS  Google Scholar 

  24. Gao M, Yang F, Wang X, Zhang G, Liu L (2007) J Phys Chem C 46:17268–17274

    Article  Google Scholar 

  25. Li J, Zhan H, Zhou L, Deng S, Li Z, Zhou Y (2004) Electrochem Commun 6:515–519

    Article  CAS  Google Scholar 

  26. Liu H, Zhang G, Zhou Y, Gao M, Yang F (2013) J Mater Chem A 44:13902–13913

    Article  Google Scholar 

  27. Sun M, Li H, Wang J, Wang G (2015) Carbon 94:864–871

    Article  CAS  Google Scholar 

  28. Yang C, Sun M, Wang X, Wang G (2015) ACS Sustain Chem Eng 3:2067–2076

    Article  CAS  Google Scholar 

  29. Pirnat K, Dominko R, Cerc-Korosec R, Mali G, Genorio B, Gaberscek M (2012) J Power Sources 199:308–314

    Article  CAS  Google Scholar 

  30. Song Z, Xu T, Gordin ML, Jiang YB, Bae IT, Xiao Q, Zhan H, Liu J, Wang D (2012) Nano Lett 5:2205–2211

    Article  Google Scholar 

  31. Nikoofard H, Omrani A, Niaki M (2014) Monatsh Chem 2:267–273

    Article  Google Scholar 

  32. Shen YF, Yuan DD, Ai XP, Yang HX, Zhou M (2015) J Polym Sci Part B: Polym Phys 53:235–238

    Article  CAS  Google Scholar 

  33. Zhao L, Wang W, Wang A, Yuan K, Chen S, Yang Y (2013) J Power Sources 233:23–27

    Article  CAS  Google Scholar 

  34. Song Z, Zhan H, Zhou Y (2009) Chem Commun 4:448–450

    Article  Google Scholar 

  35. Liu M, Miao YE, Zhang C, Tjiu WW, Yang Z, Peng H, Liu T (2013) Nanoscale 16:7312–7320

    Article  Google Scholar 

  36. Sun M, Wang G, Yang C, Jiang H, Li C (2015) J Mater Chem A 3:3880–3890

    Article  CAS  Google Scholar 

  37. Zhou Y, Wang B, Liu C, Han N, Xu X, Zhao F, Fan J, Li Y (2015) Nano Energy 15:654–661

    Article  CAS  Google Scholar 

  38. Tian M, Wang W, Liu Y, Jungjohann KL, Thomas Harris C, Lee YC, Yang R (2015) Nano Energy 11:500–509

    Article  CAS  Google Scholar 

  39. Zhao Q, Wang X, Liu J, Wang H, Zhang Y, Gao J, Lu Q, Zhou H (2015) Electrochim Acta 154:110–118

    Article  CAS  Google Scholar 

  40. Zhou Z, Xie W, Li S, Jiang X, He D, Peng S, Ma F (2015) J Solid State Electrochem 4:1211–1215

    Article  Google Scholar 

  41. Wang T, Shi P, Chen J, Cheng S, Xiang H (2016) J Nanoparticle Res 18:1–9

    Article  Google Scholar 

  42. Chang J, Gao Z, Wang X, Wu D, Xu F, Wang X, Guo Y, Jiang K (2015) Electrochim Acta 157:290–298

    Article  CAS  Google Scholar 

  43. Chi TY, Li H, Li XW, Bao H, Wang GC (2013) Electrochim Acta 96:206–213

    Article  CAS  Google Scholar 

  44. Yang J, Wang S, Ma Z, Du Z, Li C, Song J, Wang G, Shao G (2015) Electrochim Acta 159:8–15

    Article  CAS  Google Scholar 

  45. Wang M, Zhang H, Zhang Y, Li J, Zhang F, Hu W (2013) J Solid State Electrochem 8:2243–2250

    Article  Google Scholar 

  46. Li X, Rao M, Li W (2015) J Solid State Electrochem 1:153–161

    Article  Google Scholar 

  47. Tian X, Zhao N, Wang K, Xu D, Song Y, Guo Q, Liu L (2015) RSC Adv 5:40884–40891

    Article  CAS  Google Scholar 

  48. Ma F, Wan J, Wu G, Zhao H (2015) RSC Adv 5:44416–44422

    Article  CAS  Google Scholar 

  49. Zhao Q, Wang X, Xia H, Liu J, Wang H, Gao J, Zhang Y, Liu J, Zhou H, Li X, Zhang S, Wang X (2015) Electrochim Acta 173:566–574

    Article  CAS  Google Scholar 

  50. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Carbon 93:315–324

    Article  CAS  Google Scholar 

  51. Bichat MP, Raymundo-Piñero E, Béguin F (2010) Carbon 48:4351–4361

    Article  CAS  Google Scholar 

  52. Senthilkumar B, Khan Z, Park S, Kim K, Ko H, Kim Y (2015) J Mater Chem A 3:21553–21561

    Article  CAS  Google Scholar 

  53. Zhao L, Wang WK, Wang AB, Yu ZB, Chen S, Yang YS (2011) J Electrochem Soc 9:A991–A996

    Google Scholar 

  54. Naoi K, Suematsu S, Manago A (2000) J Electrochem Soc 147:420–426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the financial support of the National Natural Science Foundation of China (51173042) and Shanghai Municipality Research Project (15520720500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengchao Wang.

Electronic Supplementary Material

ESM 1

(DOC 4055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, H., Tang, Q. et al. Activated hierarchical porous carbon@π-conjugated polymer composite as cathode for high-performance lithium storage. J Solid State Electrochem 20, 2169–2177 (2016). https://doi.org/10.1007/s10008-016-3215-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3215-6

Keywords

Navigation