Skip to main content
Log in

LiFePO4 synthesized via melt synthesis using low-cost iron precursors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiFePO4/C material has been prepared using fast-melt synthesis method followed by grinding and carbon coating. The low-cost iron ore concentrate (IOC) and purified iron ore concentrate (IOP) were used as iron precursors in the melt process to reduce significantly the cost of LiFePO4/C. The same product was also synthesized using pure Fe2O3 under similar conditions as reference. The physical-chemical and electrochemical properties of samples were investigated. The X-ray Diffraction (XRD) results confirm the formation of an olivine structure of LiFePO4 with a minor amount of Li3PO4 and Li4P2O7 impurities for all the samples but no Fe2P. The power performances of LiFePO4/C using low-cost iron precursors were close to the sample using pure Fe2O3 precursor although capacity in mAh g−1 is somewhat lower. With the inherent presence of silicon and other metals species, multi-substitution may take place when using IOC as source of iron leading to a Li(Fe1-yMy)(P1-xSix)O4 general composition. Multi-substitution, however, allows a better cycling stability. Therefore, these iron precursors present a promising option in this field to reduce the cost of a large-scale synthesis of LiFePO4/C for Li-ion batteries application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) Optimized Lifepo4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  3. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507

    Article  Google Scholar 

  4. Hong J, Wang X-L, Wang Q, Omenya F, Chernova NA, Whittingham MS, Graetz J (2012) Structure and electrochemistry of vanadium-modified Lifepo4. J Phys Chem C 116:20787–20793

    Article  CAS  Google Scholar 

  5. Talebi-Esfandarani M, Savadogo O (2014) Enhancement of electrochemical properties of platinum doped Lifepo4/C cathode material synthesized using hydrothermal method. Solid State Ionics 261:81–86

    Article  CAS  Google Scholar 

  6. Yang S, Zavalij PY, Stanley Whittingham M (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508

    Article  CAS  Google Scholar 

  7. Talebi-Esfandarani M, Savadogo O (2014) Synthesis and characterization of Pt-doped Lifepo4/C composites using the sol–gel method as the cathode material in lithium-Ion batteries. J Appl Electrochem 44:555–562

    Article  CAS  Google Scholar 

  8. Gong Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242

    Article  CAS  Google Scholar 

  9. Jugović D, Uskoković D (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources 190:538–544

    Article  Google Scholar 

  10. Murugan AV, Muraliganth T, Manthiram A (2008) Comparison of microwave assisted solvothermal and hydrothermal syntheses of Lifepo4/C nanocomposite cathodes for lithium ion batteries. J Phys Chem C 112:14665–14671

    Article  CAS  Google Scholar 

  11. Wang Y, Feng Z-S, Chen J-J, Zhang C (2012) Synthesis and electrochemical performance of Lifepo4/graphene composites by solid-state reaction. Mater Lett 71:54–56

    Article  CAS  Google Scholar 

  12. Kim D-K, Park H-M, Jung S-J, Jeong YU, Lee J-H, Kim J-J (2006) Effect of synthesis conditions on the properties of Lifepo4 for secondary lithium batteries. J Power Sources 159:237–240

    Article  Google Scholar 

  13. Wang J, Yang J, Tang Y, Liu J, Zhang Y, Liang G, Gauthier M, Karen Chen-Wiegart Y-c, Norouzi Banis M, Li X, Li R, Wang J, Sham TK, Sun X (2014) Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nat Commun 5

  14. Ni J-F, Zhou H-H, Chen J-T, Zhang X-X (2007) Molten salt synthesis and electrochemical properties of spherical Lifepo4 particles. Mater Lett 61:1260–1264

    Article  CAS  Google Scholar 

  15. Zhang W-J (2010) Comparison of the rate capacities of Lifepo4 cathode materials. J Electrochem Soc 157:A1040–A1046

    Article  CAS  Google Scholar 

  16. Ferrari S, Lavall RL, Capsoni D, Quartarone E, Magistris A, Mustarelli P, Canton P (2010) Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated Lifepo4. J Phys Chem C 114:12598–12603

    Article  CAS  Google Scholar 

  17. Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Nonstoichiometric Lifepo4: defects and related properties. Chem Mater 21:1636–1644

    Article  CAS  Google Scholar 

  18. Yu DYW, Donoue K, Kadohata T, Murata T, Matsuta S, Fujitani S (2008) Impurities in Lifepo4 and their influence on material characteristics. J Electrochem Soc 155:A526–A530

    Article  CAS  Google Scholar 

  19. Ojczyk W, Marzec J, Świerczek K, Zając W, Molenda M, Dziembaj R, Molenda J (2007) Studies of selected synthesis procedures of the conducting Lifepo4-based composite cathode materials for Li-ion batteries. J Power Sources 173:700–706

    Article  CAS  Google Scholar 

  20. Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of Lifepo4 at 60°C with purity controlled by squid magnetometry. J Power Sources 163:560–566

    Article  CAS  Google Scholar 

  21. Ravet N, Gauthier M, Zaghib K, Goodenough MA, Gendron F, Julien (2007) Mechanism of the Fe3+ reduction at low temperature for Lifepo4 synthesis from a polymeric additive. Chem Mater 19:2595–2602

    Article  CAS  Google Scholar 

  22. Zhang W-J (2011) Structure and performance of Lifepo4 cathode materials: a review. J Power Sources 196:2962–2970

    Article  CAS  Google Scholar 

  23. Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y (2011) Suppressing Li3po4 impurity formation in Lifepo4/Fe2p by a nonstoichiometry synthesis and its effect on electrochemical properties. Mater Lett 65:1323–1326

    Article  CAS  Google Scholar 

  24. L. Gauthier MG, D. Lavoie, C. Michot, N. Ravet (2003) Patent

  25. Gauthier M, Michot C, Ravet N, Duchesneau M, Dufour J, Liang G, Wontcheu J, Gauthier L, MacNeil DD (2010) Melt casting Lifepo4: I synthesis and characterization. J Electrochem Soc 157:A453–A462

    Article  CAS  Google Scholar 

  26. MacNeil DD, Devigne L, Michot C, Rodrigues I, Liang G, Gauthier M (2010) Melt casting Lifepo4: Li particle size reduction and electrochemical evaluation. J Electrochem Soc 157:A463–A468

    Article  CAS  Google Scholar 

  27. Daheron B, MacNeil D (2011) Study of Lifepo4 synthesized using a molten method with varying stoichiometries. J Solid State Electrochem 15:1217–1225

    Article  CAS  Google Scholar 

  28. Zaghib K, Charest P, Dontigny M, Guerfi A, Lagacé M, Mauger A, Kopec M, Julien CM (2010) Lifepo4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195:8280–8288

    Article  CAS  Google Scholar 

  29. Okada S, Yamamoto T, Okazaki Y, J-i Y, Tokunaga M, Nishida T (2005) Cathode properties of amorphous and crystalline Fepo4. J Power Sources 146:570–574

    Article  CAS  Google Scholar 

  30. Ait Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction Fe3+ of impurities in Lifepo4 from pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692–A1701

    Article  CAS  Google Scholar 

  31. Wagemaker M, Ellis BL, Lützenkirchen-Hecht D, Mulder FM, Nazar LF (2008) Proof of supervalent doping in olivine Lifepo4. Chem Mater 20:6313–6315

    Article  CAS  Google Scholar 

  32. Ellis BL, Wagemaker M, Mulder FM, Nazar LF (2010) Comment on “aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties”. Adv Funct Mater 20:186–188

    Article  CAS  Google Scholar 

  33. Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  34. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the Lifepo4 olivine-type battery material. Chem Mater 17:5085–5092

    Article  CAS  Google Scholar 

  35. Amin R, Lin C, Peng J, Weichert K, Acartürk T, Starke U, Maier J (2009) Silicon-doped Lifepo4 single crystals: growth, conductivity behavior, and diffusivity. Adv Funct Mater 19:1697–1704

    Article  CAS  Google Scholar 

  36. Nishijima M, Ootani T, Kamimura Y, Sueki T, Esaki S, Murai S, Fujita K, Tanaka K, Ohira K, Koyama Y, Tanaka I (2014) Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat Commun 5:

  37. Meethong N, Kao Y-H, Speakman SA, Chiang Y-M (2009) Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv Funct Mater 19:1060–1070

    Article  CAS  Google Scholar 

  38. Swamy V, Saxena SK, Sundman B, Zhang J (1994) A thermodynamic assessment of silica phase diagram. J Geophys Res Solid Earth 99:11787–11794

    Article  Google Scholar 

  39. Wahl FM, Grim RE, Graff RB (1961) Phase transformations in silica as examined by continuous X-ray diffraction. Am Mineral 46:196–208

    CAS  Google Scholar 

  40. Zaghib K, Charest P, Guerfi A, Liang G (2009) Lithium iron phosphate cathode materials with enhanced energy density and power performance

  41. Song H-K, Lee KT, Kim MG, Nazar LF, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater 20:3818–3834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NSERC for the financial support awarded to this project as part of the Automotive Partnership Canada program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dollé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi-Esfandarani, M., Rousselot, S., Gauthier, M. et al. LiFePO4 synthesized via melt synthesis using low-cost iron precursors. J Solid State Electrochem 20, 1821–1829 (2016). https://doi.org/10.1007/s10008-015-3049-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3049-7

Keywords

Navigation