Skip to main content
Log in

Formation of stable phases of the Li–Mn–Co oxide system at 800 °C under ambient oxygen pressure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis method of lithiated d-metal oxides using molten formate mixtures as precursors has been developed and the isothermal (800 °C) cross section of pseudo ternary Li–Mn–Co oxide system under ambient oxygen pressure has been investigated by XRD, 7Li NMR, and galvanostatic electrochemical methods. Special attention has been paid to the compositions inside the quadrangle restricted by solid solutions LiCoO2–LiCo0.85Mn0.15O2 with the layered structure of α-NaFeO2 and solid solutions LiMn2O4–LiMnCoO4 with the structure of spinel. It was found that, depending on the composition, three types of equilibrium phases could be formed: spinels Li[Li,Mn,Co]2O4 with a part of Li atoms in octahedral sites, cation-deficit layered compounds Li1 − δ [Co,Mn]O2, and Li2MnO3. Areas of (co)existence of these phases were plotted on the composition plane of the pseudo-ternary Li–Mn–Co system. Electrochemical properties of the compositions inside the quadrangle LiCoO2–LiCo0.85Mn0.15O2–LiMn2O4–LiMnCoO4 are determined by the content and average oxidation number of Mn atoms, which is higher than in the normal spinels Li[Mn,Co]2O4. Thus, the specific capacities of the polyphase compositions are lower in comparison with the binary solid solutions Li[Mn,Co]2O4 or pure LiCoO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  2. Tao H, Feng Z, Liu H, Kan X, P. Chen P (2011) Open Mater Sci J 5:204–214

    Article  Google Scholar 

  3. Shukla AK, Prem Kumar T (2008) Curr Sci 94:314–331

    CAS  Google Scholar 

  4. Wakihara M, Ikuta H, Uchimoto Y (2002) Ionics 8:329–338

    Article  CAS  Google Scholar 

  5. Lee BW (2002) J Power Sources 109:220–226

    Article  CAS  Google Scholar 

  6. Suryakala K, Marikkannu KR, Paruthimal Kalaignan G, Vasudevan T (2007) J Solid State Electrochem 11:1671–1677

    Article  CAS  Google Scholar 

  7. Makhonina EV, Dubasova VS, Pervov VS, Nikolenko AF, Fialkov AS (2001) Inorg Mater 37:1073–1079

    Article  CAS  Google Scholar 

  8. Yanase I, Ohtaki T, Watanabe M (2002) Solid State Ionics 151:189–196

    Article  CAS  Google Scholar 

  9. Zhecheva E, Stoyanova R, Gorova M, Lavela P, Tirado JL (2001) Solid State Ionics 140:19–33

    Article  CAS  Google Scholar 

  10. Shigemura H, Tabuchi M, Kobayashi H, Sakaebe H, Hirano A, Kageyama H (2002) J Mater Chem 12:1882–1891

    Article  CAS  Google Scholar 

  11. Yen-Pei F, Yu-Hsiu S, Lin C-H, Wu S-H (2006) J Mater Sci 41:1157–1164

    Article  Google Scholar 

  12. Franger S, Bach S, Pereira-Ramos JP, Baffier N (2006) J Solid State Electrochem 10:389–396

    Article  CAS  Google Scholar 

  13. Yaochun Y, Yongnian D, Bin Y, Wenhui M, Watanabe T (2007) J Wuhan Univ Technol-Mater Sci 22:307–310

    Article  Google Scholar 

  14. Wakihara M, Ikuta H, Uchimoto Y (2002) Ionics 8:329–338

    Article  CAS  Google Scholar 

  15. Shpak AY, Andriyko YO, Vlasenko NY, Andriiko AA (2010) Res Bull NTUU "KPI" 3:138–142

    Google Scholar 

  16. Cupid DM, Lehmann T, Berndt H, Seifert HJ (2013) J Mater Sci 48:3395–3403

    Article  CAS  Google Scholar 

  17. Paulsen JM, Dahn JR (1999) Chem Mater 11:3065–3079

    Article  CAS  Google Scholar 

  18. Andriiko AA, Shpak AYe, Andriyko YuO, Garcia Jose R, Khainakov SA, Vlasenko NY (2012) J Solid State Electrochem 16:1993-1998

  19. Andriiko AA, Shpak AY, Vlasenko NY, Stepanenko NM (2008) Chem Metals and Alloys 1:283–287

    Google Scholar 

  20. Colby R (2013) Brown, McCalla E, Dahn JR. Solid State Ionics 253:234–238

    Article  Google Scholar 

  21. Morgan KR, Collier S, Burns G, Ooi K (1994) J Chem Soc. Chem Commun 1719-1720

  22. Verhoeven VWJ, de Schepper IM, Nachtegaal G, Kentgens APM, Kelder EM, Schoonman J, Mulder FM (2001) Phys Rev Lett 86:4314–4317

    Article  CAS  Google Scholar 

  23. Paik Y, Grey CP, Johnson CS, Kim JS, Thackeray MM (2002) Chem Mater 14:5109–5115

Download references

Acknowledgments

SKKS and JD acknowledge the Région Pays de la Loire for the financial support (Convention No. 2007-11860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andriiko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpak, A.Y., Kumara Swamy, S.K., Dittmer, J. et al. Formation of stable phases of the Li–Mn–Co oxide system at 800 °C under ambient oxygen pressure. J Solid State Electrochem 20, 87–94 (2016). https://doi.org/10.1007/s10008-015-3001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3001-x

Keywords

Navigation