Skip to main content
Log in

Electrochemical DNA sensor for Staphylococcus aureus nuc gene sequence with zirconia and graphene modified electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, zirconia (ZrO2) and graphene (GR) nanocomposite was electrodeposited on the surface of carbon ionic liquid electrode (CILE), which was used to construct an electrochemical DNA biosensor. GR was electroreduced from graphene oxide by potentiostatic method, and ZrO2 nanoparticle was further electrodeposited on GR/CILE by cycling voltammetric scan in a ZrOCl2 solution. The presence of GR on the electrode surface can provide a highly conductive interface with large surface area for the loading of ZrO2 nanoparticles. Single-stranded DNA (ssDNA) probe sequences with phosphate group at the 5′ end could be easily immobilized on the surface of ZrO2/GR/CILE due to the strong affinity between ZrO2 and phosphate groups. The ssDNA/ZrO2/GR/CILE was applied to hybridize with the target ssDNA sequence, and methylene blue (MB) was used as the electrochemical indicator. Due to the different binding models of MB with double-stranded DNA and ssDNA on the electrode surface, electrochemical response of MB was decreased after the hybridization reaction. Under the optimal conditions, the reduction peak current of MB was proportional to the concentration of Staphylococcus aureus nuc gene sequence in the range from 1.0 × 10−13 to 1.0 × 10−6 mol L−1 with the detection limit of 3.23 × 10−14 mol L−1 (3σ). The electrochemical DNA sensor exhibited good selectivity to various mismatched ssDNA sequences, and the polymerase chain reaction amplification products of S. aureus nuc gene sequence were further detected with satisfactory results. Therefore, this electrochemical DNA sensor with ZrO2 nanoparticles and GR nanosheet modified electrode could be used for the detection of specific ssDNA sequence in real biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim AK, Novoselov AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Chen D, Tang LH, Li JH (2010) Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  4. Dreyer DR, Park SJ, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  5. Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Adv Mater 24:5979–6004

    Article  CAS  Google Scholar 

  6. Brownson D, Banks C (2010) Analyst 135:2768–2778

    Article  CAS  Google Scholar 

  7. Chen D, Feng HB, Li JH (2012) Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  8. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  9. Bai S, Shen XP (2012) RSC Adv 2:64–98

    Article  CAS  Google Scholar 

  10. Dobson KD, McQuillan AJ (1997) Langumuir 13:328–339

    Google Scholar 

  11. Fang M, Kaschak DM, Sutorik AC, Mallouk TE (1997) J Am Chem Soc 119:12184–12191

    Article  CAS  Google Scholar 

  12. Liu GD, Lin YH (2005) Anal Chem 77:5894–5901

    Article  CAS  Google Scholar 

  13. Du D, Ye XP, Zhang JD, Zeng Y, Tu HY, Zhang AD, Liu DL (2008) Electrochem Commun 10:686–690

    Article  CAS  Google Scholar 

  14. Zong SZ, Cao Y, Zhou YM, Ju HX (2006) Langmuir 22:8915–8919

    Article  CAS  Google Scholar 

  15. Liu SQ, Dai ZH, Chen HY, Ju HX (2004) Biosens Bioelectron 19:963–969

    Article  CAS  Google Scholar 

  16. Yang XD, Zhang QQ, Sun YM, Liu SQ (2007) IEEE Sensors J 12:1735–1741

    Article  Google Scholar 

  17. Qiao K, Hu NF (2009) Bioelectrochemistry 75:71–76

    Article  CAS  Google Scholar 

  18. Zhu NN, Zhang AP, Wang QJ, He PG, Fang YZ (2004) Anal Chim Acta 510:163–168

    Article  CAS  Google Scholar 

  19. Yang J, Jiao K, Yang T (2007) Anal Bioanal Chem 389:913–921

    Article  CAS  Google Scholar 

  20. Pang H, Lu QY, Gao F (2011) Chem Commun 47:11772–11774

    Article  CAS  Google Scholar 

  21. Du D, Liu J, Zhang XY, Cui XL, Lin YH (2011) J Mater Chem 21:8032–8037

    Article  CAS  Google Scholar 

  22. Gong JM, Miao XJ, Wang HF, Song DD (2012) Sensors Actuators B Chem 102:341–347

    Article  Google Scholar 

  23. Sun W, Wang XZ, Sun XH, Deng Y, Liu J, Lei BX, Sun ZF (2013) Biosens Bioelectron 44:146–151

    Article  CAS  Google Scholar 

  24. Drummond TG, Hill MG, Barton JK (2003) Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  25. Mao X, Liu GD (2008) J Biomed Nanotechnol 4:419–431

    Article  CAS  Google Scholar 

  26. Bonanni A, Valle M (2010) Anal Chim Acta 678:7–17

    Article  CAS  Google Scholar 

  27. Hvastkovs EG, Buttry DA (2010) Analyst 135:1817–1829

    Article  CAS  Google Scholar 

  28. Liu A, Wang K, Weng SH, Lei Y, Lin LQ, Chen W, Lin XH, Chen YZ (2012) Trends Anal Chem 37:101–111

    Article  Google Scholar 

  29. Tichoniuk M, Gwiazdowska D, Ligaj M, Filipiak M (2010) Biosens Bioelectron 26:1618–1623

    Article  CAS  Google Scholar 

  30. Ligaj M, Tichoniuk M, Gwiazdowska D, Filipiak M (2014) Electrochim Acta 128:67–74

    Article  CAS  Google Scholar 

  31. Fernandes AM, Abdalhai MH, Ji J, Xi BW, Xie J, Sun JD, Noeline R, Lee BH, Sun XL (2015) Biosens Bioelectron 63:399–406

    Article  CAS  Google Scholar 

  32. Sun W, Zhang YY, Ju XM, Li GJ, Gao HW, Sun ZF (2012) Anal Chim Acta 752:39–44

    Article  CAS  Google Scholar 

  33. Sun W, Qi XW, Zhang YY, Yang HR, Gao HW, Chen Y, Sun ZF (2012) Electrochim Acta 5:45–151

    Google Scholar 

  34. Opallo M, Lesniewski A (2011) J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  35. Shiddiky MJA, Torriero AAJ (2011) Biosens Bioelectron 26:1775–1787

    Article  CAS  Google Scholar 

  36. Sun W, Li YZ, Yang MX, Li J, Jiao K (2008) Sensors Actuators B 133:387–392

    Article  CAS  Google Scholar 

  37. Zhou M, Wang YL, Zhai YM, Zhai JF, Ren W, Wang FA, Dong SJ (2009) Chem Eur J 15:6116–6120

    Article  CAS  Google Scholar 

  38. Sun W, Qi XW, Chen Y, Liu SY, Gao HW (2011) Talanta 87:106–112

    Article  CAS  Google Scholar 

  39. Yang YH, Wang ZJ, Yang MH, Li JS, Zheng F, Shen GL, Yu RQ (2007) Anal Chim Acta 594:268–274

    Article  Google Scholar 

  40. Ma HY, Zhang LP, Pan Y, Zhang KY, Zhang YZ (2008) Electroanalysis 20:1220–1226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21365010, 51363008), the Natural Science Foundation of Shandong Province (ZR2013BM014), the Natural Science Foundation of Hainan Province (20152016), and the International Science and Technology Cooperation Project of Hainan Province (KJHZ2015-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Sun or Guangjiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wang, X., Wang, W. et al. Electrochemical DNA sensor for Staphylococcus aureus nuc gene sequence with zirconia and graphene modified electrode. J Solid State Electrochem 19, 2431–2438 (2015). https://doi.org/10.1007/s10008-015-2893-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2893-9

Keywords

Navigation