Skip to main content
Log in

Behavior of anode-supported SOFCs under simulated syngases

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The carbon amounts of simulated syngases with different compositions were calculated in this study. The degradation and carbon deposition behavior of solid oxide fuel cells (SOFCs) with an active area of 4 cm × 4 cm were then investigated under the simulated syngases at work conditions. Carbon deposition occurred over time with a little or no H2O and CO2 in these gasses, which significantly degraded the single cells. The cell stabilized within 1 h under a gas mixture of 70 % H2–30 % CO because of the chocking of inlet pipelines of the testing house by carbon deposition. Addition of proper H2O and CO2 in the simulated syngas effectively suppressed carbon deposition in the pipelines. However, carbon was still deposited gradually in the single cell anode when H2O and CO2 were insufficient. The mechanisms of carbon deposition were different when the cells were exposed under different syngases. Single cells steadily thrived under 50 % H2–20 % CO–10 % CO2–20 % H2O and 50 % H2–20 % CO–20 % CO2–10 % H2O gas mixtures for about 2000 h without carbon deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sumi H, Lee YH, Muroyama H, Matsui T, Kamijo M, Mimuro S, Yamanaka M, Nakajima Y, Eguchi K (2011) Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells. J Power Sources 196:4451–4457

    Article  CAS  Google Scholar 

  2. Weber A, Sauer B, Muller AC, Herbstritt D, Ivers-Tiffee E (2002) Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes. Solid State Ionics 152–153:543–550

    Article  Google Scholar 

  3. Alzate-Restrepo V, Hill JM (2010) Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds. J Power Sources 195:1344–1351

    Article  CAS  Google Scholar 

  4. Miao H, Wang WG, Li TS, Chen T, Sun SS, Xu C (2010) Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells. J Power Sources 195:2230–2235

    Article  CAS  Google Scholar 

  5. Chen T, Wang WG, Miao H, Li TS, Xu C (2011) Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J Power Sources 196:2461–2468

    Article  CAS  Google Scholar 

  6. Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al-Madhi OH, Dabbousi BO (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238

    Article  CAS  Google Scholar 

  7. Li C, Shi Y, Cai N (2013) Carbon deposition on nickel cermet anodes of solid oxide fuel cells operating on carbon monoxide fuel. J Power Sources 225:1–8

    Article  CAS  Google Scholar 

  8. Ye XF, Wang SR, Zhou J, Zeng FR, Nie HW, Wen TL (2010) Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported solid oxide fuel cells operating on H2-CO syngas fuels. J Power Sources 195:7264–7267

    Article  CAS  Google Scholar 

  9. Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y, Ueno A, Omoshiki K, Aizawa M (2002) Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources 112:588–595

    Article  CAS  Google Scholar 

  10. Finnerty CM, Coe NJ, Cunningham RH, Ormerod RM (1998) Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane. Catal Today 46:137–145

    Article  CAS  Google Scholar 

  11. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250

    Article  CAS  Google Scholar 

  12. Martnez-Arias A, Hungra AB, Fernandez-Garcia M, Iglesias-Juez A, Conesa JC, Mather GC, Munuera G (2005) Cerium-terbium mixed oxides as potential materials for anodes in solid oxide fuel cells. J Power Sources 151:43–51

    Article  Google Scholar 

  13. Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323

    Article  CAS  Google Scholar 

  14. Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid oxide fuel cells. Science 312:254–257

    Article  CAS  Google Scholar 

  15. Burnette DD, Kremer GG, Bayless DJ (2008) The use of hydrogen-depleted coal syngas in solid oxide fuel cells. J Power Sources 182:329–333

    Article  CAS  Google Scholar 

  16. Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases. I. Equilibrium compositions and reforming conditions. J Electrochem Soc 150:A878–A884

    Article  CAS  Google Scholar 

  17. Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases. II. The C-H-O ternary diagrams. J Electrochem Soc 150:A885–A888

    Article  CAS  Google Scholar 

  18. Haanappel VAC, Mai A, Mertens J (2006) Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes. Solid State Ionics 177:2033–2037

    Article  CAS  Google Scholar 

  19. Tuinstra F, Koenig JL (1969) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  20. Li C, Shi Y, Cai N (2011) Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell. J Power Sources 196:754–763

    Article  CAS  Google Scholar 

  21. Grabke HJ (2003) Metal dusting. Mater Corros 54:736–746

    Article  CAS  Google Scholar 

  22. Zhang J, Schneider A, Inden G (2008) Initiation and growth of iron metal dusting in CO-H2-H2O gas mixtures. Corros Sci 50:1020–1034

    Article  CAS  Google Scholar 

  23. Li TS, Wang WG, Miao H, Chen T, Xu C (2010) Effect of reduction temperature on the electrochemical properties of a Ni/YSZ anode-supported solid oxide fuel cell. J Alloys Compd 495:138–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from the National Natural Science Foundation of China (Grant No. 21103212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Miao or Wei Guo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Liu, G., Chen, T. et al. Behavior of anode-supported SOFCs under simulated syngases. J Solid State Electrochem 19, 639–646 (2015). https://doi.org/10.1007/s10008-014-2640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2640-7

Keywords

Navigation