Skip to main content
Log in

Nano-p–n junction heterostructures enhanced TiO2 nanobelts biosensing electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2015

Abstract

6-Phosphate aminopurine (6PA), a purine analog, is usually used in clinical anticancer treatment and biochemical research. Up to now, to the best of our knowledge, no literature about the electrochemical behaviors of 6PA has been reported. In this study, nano-p–n junction heterostructures based on TiO2 nanobelts were produced by the assembly of p-type semiconducting NiO nanoparticles onto the n-type surface-coarsened TiO2 nanobelts. The electrochemical behaviors of 6PA were investigated by different voltammetric techniques in a phosphate buffer solution of pH 7.4 using the heterostructures as the sensing electrode. Compared with single-phase TiO2 nanobelt electrodes, the resulting chemically modified electrodes exhibited higher surface accumulation ability and enhanced electrocatalytic activities in the oxidation for 6PA, with an irreversible oxidation peak at +0.91 V. It is proposed that the nano-p–n junction heterostructures played an important role in the enhancement of charge transport in the sensing electrodes. The results suggest that the nanoengineered TiO2 nanobelts might be a promising candidate for biosensing applications of nucleic acid drugs that will be of significance to diagnostic medicine and molecular biology research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li XC, He GH, Han Y, Xue Q, Wu XM, Yang SR (2012) J Colloid Interface Sci 387:39–46

    Article  CAS  Google Scholar 

  2. Zhang J, Li LP, Li GS (2012) Phys Chem Chem Phys 14:11167–11177

    Article  CAS  Google Scholar 

  3. Banfield JF, Veblen DR (1992) Am Mineral 77:545–557

    CAS  Google Scholar 

  4. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638–642

    Article  CAS  Google Scholar 

  5. Wang W, Ni YR, Lu CH, Xu ZZ (2012) RSC Adv 2:8286–8288

    Article  CAS  Google Scholar 

  6. Barbora L, Marketa Z, Ladislav K, Alison C, Paul L, Zhang W, Liu B, Pavel K, Elham G, Jacques EM, Michael G (2012) J Solid State Electrochem 16:2993–3001

    Article  Google Scholar 

  7. Chen XB, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  8. Wu R, Chen XH, Hu JQ (2012) J Solid State Electrochem 16:1975–1982

    Article  CAS  Google Scholar 

  9. Cui JJ, Sun DH, Zhou WJ, Liu H, Hu PG, Ren N, Qin HM, Huang Z, Lin JJ, Ma HY (2011) Phys Chem Chem Phys 13:9232–9237

    Article  CAS  Google Scholar 

  10. Cui JJ, Sun DH, Chen SW, Zhou WJ, Hu PG, Liu H, Huang Z (2011) J Mater Chem 21:10633–10636

    Article  CAS  Google Scholar 

  11. Zhou WJ, Gai LG, Hu PG, Cui JJ, Liu XY, Wang DZ, Li GH, Jiang HD, Liu D, Liu H, Wang JY (2011) CrystEngComm 13:6643–6649

    Article  CAS  Google Scholar 

  12. Lee CY, Chiang CM, Wang YH, Mac RH (2007) Sensors Actuators B 122:503–510

    Article  CAS  Google Scholar 

  13. Hotovy I, Rehacek V, Siciliano P, Caponec S, Spiess L (2002) Thin Solid Films 418:9–15

    Article  CAS  Google Scholar 

  14. Mattei G, Mazzoldi P, Post ML, Buso D, Guglielmi M, Martucci A (2007) Adv Mater 19:561–564

    Article  CAS  Google Scholar 

  15. Li PP, Liu SP, Yan SG, Fan XQ, He YQ (2011) Colloids Surf A 392:7–15

    Article  CAS  Google Scholar 

  16. Park EK, Lee SB, Lee YM (2005) Biomaterials 26:1053–1061

    Article  CAS  Google Scholar 

  17. Hartinger CG, Ang WH, Casini A, Messori L, Keppler BK, Dyson PJ (2007) J Anal At Spectrom 22:960–967

    Article  CAS  Google Scholar 

  18. Win KY, Feng SS (2005) Biomaterials 26:2713–2722

    Article  CAS  Google Scholar 

  19. Iwamoto M, Mukundan S Jr, Marzilli LG (1994) J Am Chem Soc 116:6238–6244

    Article  CAS  Google Scholar 

  20. El-Said WA, Yea CH, Kim H, Oh BK, Choia JW (2009) Biosens Bioelectron 24:1259–1265

    Article  CAS  Google Scholar 

  21. Wang J (2002) Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  22. Madshus IH (1988) Biochem J 250:1–8

    CAS  Google Scholar 

  23. Povsic TJ, Dervan PB (1989) J Am Chem Soc 111:3059–3061

    Article  CAS  Google Scholar 

  24. Zhou XD, Huebner W (2001) Appl Phys Lett 79:3512–3514

    Article  CAS  Google Scholar 

  25. Chen SF, Zhang SJ, Liu W, Zhao W (2008) J Hazard Mater 155:320–326

    Article  CAS  Google Scholar 

  26. Tomčík P, Jenčušová P, Krajčíková M, Bustin D, Manová A, Čakrt M (2006) J Electroanal Chem 593:167–171

    Article  Google Scholar 

  27. Cui JJ, Ge YK, Chen SW, Liu H, Huang Z, Jiang HD, Chen J (2013) J Mater Chem B 1:2072–2077

    Article  CAS  Google Scholar 

  28. Nowicka AM, Zabost E, Donten M, Mazerska Z, Stojek Z (2007) Anal Bioanal Chem 389:1931–1940

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  30. de los Santos-Alvarez N, de los Santos-Alvarez P, Lobo-Castanon MJ, Lopez R, Miranda-Ordieres AJ, Tunon-Blanco P (2007) Electrochem Commun 9:1862–1866

    Article  Google Scholar 

  31. Wang ZH, Xiao SF, Chen Y (2006) J Electroanal Chem 589:237–242

    Article  CAS  Google Scholar 

  32. Laviron E (1974) J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSFC (grant nos. 51102152, 50925205, and 51172132), Young Academic Leaders’ Climbing Program of Zhejiang Province (GK130204217002/001), China Science Foundation for Postdoctor (10000071311003), and Independent Innovation Foundation of Hangzhou Dianzi University (KYS195612009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjie Cui or Hong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Chen, S., Liu, H. et al. Nano-p–n junction heterostructures enhanced TiO2 nanobelts biosensing electrode. J Solid State Electrochem 18, 2693–2699 (2014). https://doi.org/10.1007/s10008-014-2524-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2524-x

Keywords

Navigation