Skip to main content
Log in

Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotube arrays

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Through introducing appropriate additives into the electrolytes, the morphology and growth efficiency of TiO2 nanotube arrays (TNTAs) have been greatly influenced. The anodizing current transients and the corresponding morphology of TNTAs were investigated and compared in detail by SEM. To further understand the mechanism, the measured current-time curves obtained during the anodization of titanium in the electrolytes with different additives are simulated. Notably, in the total anodizing current, the ionic current is separated from the electronic current according to the present model, and that the electronic current and ionic current make different contributions to the growth of TNTAs. It is found that the initiation of nanopores may be caused by the rupture of the oxygen bubbles occluded in the growing oxide, and the opening of nanotubes is thought to be close related to the disturbance effect of the rising bubbles (caused by electronic current). The present results would be helpful for understanding the formation mechanism of TNTAs from the perspective of ionic and electronic current. And practically, the nanotube length can be predicted and deduced quantitatively via simulating and comparing electronic and ionic current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Electrochim Acta 45:921–929

    Article  CAS  Google Scholar 

  2. Li D, Chang PC, Chien CJ, Lu JG (2010) Chem Mater 22:5707–5711

    Article  CAS  Google Scholar 

  3. Hsu HL, Tien CF, Leu J (2014) J Solid State Electr: 1–7

  4. Chen B, Hou J, Lu K (2013) Langmuir 29:5911–5919

    Article  CAS  Google Scholar 

  5. Chen K, Feng X, Hu R, Li Y, Xie K, Li Y, Gu H (2013) J Alloys Compd 554:72–79

    Article  CAS  Google Scholar 

  6. Chen Q, Liu H, Xin Y, Cheng X, Zhang J, Li J, Wang P, Li H (2013) Electrochim Acta 99:152–160

    Article  CAS  Google Scholar 

  7. Mazzarolo A, Lee K, Vicenzo A, Schmuki P (2012) Electrochem Commun 22:162–165

    Article  CAS  Google Scholar 

  8. Yu L, Wang Z, Zhang L, Wu HB, Lou XW (2013) J Mater Chem A 1:122–127

    Article  CAS  Google Scholar 

  9. Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  10. Guan D, Wang Y (2012) Nanoscale 4:2968–2977

    Article  CAS  Google Scholar 

  11. Gui Q, Yu D, Zhang S, Xiao H, Yang C, Song Y, Zhu X (2014) J Solid State Electrochem 18:141–148

    Article  CAS  Google Scholar 

  12. Chen B, Lu K (2012) Langmuir 28:2937–2943

    Article  CAS  Google Scholar 

  13. Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Electrochem Commun 12:616–619

    Article  CAS  Google Scholar 

  14. So S, Lee K, Schmuki P (2012) J Am Chem Soc 134:11316–11318

    Article  CAS  Google Scholar 

  15. Liu G, Hoivik N, Wang K, Jakobsen H (2011) J Mater Sci 46:7931–7935

    Article  CAS  Google Scholar 

  16. Liu G, Wang K, Hoivik N, Jakobsen H (2012) Sol Energy Mater Sol Cells 98:24–38

    Article  CAS  Google Scholar 

  17. Lai CW, Sreekantan S, Lockman Z (2012) J Nanosci Nanotechnol 12:4057–4066

    Article  CAS  Google Scholar 

  18. Wang Y, Wu Y, Qin Y, Xu G, Hu X, Cui J, Zheng H, Hong Y, Zhang X (2011) J Alloys Compd 509:L157–L160

    Article  CAS  Google Scholar 

  19. Krengvirat W, Sreekantan S, Noor AFM, Kawamura G, Muto H, Matsuda A (2013) Electrochim Acta 89:585–593

    Article  CAS  Google Scholar 

  20. Sreekantan S, Wei LC, Lockman Z (2011) J Electrochem Soc 158:C397–C402

    Article  CAS  Google Scholar 

  21. Allam NK, Shankar K, Grimes CA (2008) J Mater Chem 18:2341–2348

    Article  CAS  Google Scholar 

  22. Hebert KR, Albu SP, Paramasivam I, Schmuki P (2012) Nat Mater 11:162–166

    CAS  Google Scholar 

  23. LeClere DJ, Velota A, Skeldon P, Thompson GE, Berger S, Kunze J, Schmuki P, Habazaki H, Nagata S (2008) J Electrochem Soc 155:C487–C494

    Article  CAS  Google Scholar 

  24. Regonini D, Satka A, Jaroenworaluck A, Allsopp DWE, Bowen CR, Stevens R (2012) Electrochim Acta 74:244–253

    Article  CAS  Google Scholar 

  25. Mazzarolo A, Curioni M, Vicenzo A, Skeldon P, Thompson GE (2012) Electrochim Acta 75:288–295

    Article  CAS  Google Scholar 

  26. Diggle JW, Downie TC, Goulding CW (1969) Chem Rev 69:365–405

    Article  CAS  Google Scholar 

  27. Zhu XF, Han H, Song Y, Ma HT, Qi WX, Lu C, Xu C (2012) Acta Phys Sin 61:228202

    Google Scholar 

  28. Houser JE, Hebert KR (2009) Nat Mater 8:415–420

    CAS  Google Scholar 

  29. Patermarakis G, Moussoutzanis K (2009) Electrochim Acta 54:2434–2443

    Article  CAS  Google Scholar 

  30. Albella JM, Montero I, Martínez-Duart JM (1987) Electrochim Acta 32:255–258

    Article  CAS  Google Scholar 

  31. Al-Abdullah ZTY, Shin Y, Kler R, Perry CC, Zhou W, Chen Q (2010) Nanotechnology 21:505601

    Article  Google Scholar 

  32. Pauric AD, Baig SA, Pantaleo AN, Wang Y, Kruse P (2013) J Electrochem Soc 160:C12–C18

    Article  CAS  Google Scholar 

  33. Song Y, Zhu X, Wang X, Che J, Du Y (2001) J Appl Electrochem 31:1273–1279

    Article  CAS  Google Scholar 

  34. Yasuda K, Macak JM, Berger S, Ghicov A, Schmuki P (2007) J Electrochem Soc 154:C472–C478

    Article  CAS  Google Scholar 

  35. Sreekantan S, Saharudin KA, Lockman Z, Tzu TW (2010) Nanotechnology 21:365603

    Article  Google Scholar 

  36. Li H, Wang J, Huang K, Sun G, Zhou M (2011) Mater Lett 65:1188–1190

    Article  CAS  Google Scholar 

  37. Yu DL, Song Y, Zhu XF, Yang RQ, Han AJ (2013) Appl Surf Sci 276:711–716

    CAS  Google Scholar 

  38. Valota A, Curioni M, Leclere DJ, Skeldon P, Falaras P, Thompson GE (2010) J Electrochem Soc 157:K243–K247

    Article  CAS  Google Scholar 

  39. Yang RQ, Jiang LF, Zhu XF, Song Y, Yu DL, Han AJ (2012) RSC Adv 2:12474–12481

    Article  CAS  Google Scholar 

  40. Zhu XF, Song Y, Liu L, Wang CY, Zheng J, Jia HB, Wang XL (2009) Nanotechnology 20:475303

    Article  Google Scholar 

  41. Zhu XF, Song Y, Yu DL, Zhang CS, Yao W (2013) Electrochem Commun 29:71–74

    Article  CAS  Google Scholar 

  42. Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100–2102

    Article  CAS  Google Scholar 

  43. Arabatzis IM, Falaras P (2003) Nano Lett 3:249–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant nos. 61171043, 51377085), the National Science and Technology Major Project of the Ministry of Science and Technology of China (2009ZX01021-002), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xufei Zhu, Hua Han or Ye Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Zhang, S., Zhu, X. et al. Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotube arrays. J Solid State Electrochem 18, 2609–2617 (2014). https://doi.org/10.1007/s10008-014-2513-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2513-0

Keywords

Navigation