Skip to main content
Log in

Effect of synthesis duration on the morphological and structural modification of the sea urchin-nanostructured γ-MnO2 and study of its electrochemical reactivity in alkaline medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Single-crystalline nanorods and sea urchin-like morphology of the γ-MnO2 nanostructures were successfully synthesized by hydrothermal method at different synthesis durations. The as-synthesized products were characterized by the techniques X-ray powder diffraction (XRD), field emission gun-scanning electron microscope (FEG-SEM) coupled with energy-dispersive X-ray elemental analysis (EDX), transmission electron microscope (TEM), isotherms of N2 adsorption/desorption and BET-BJH models. The effect of synthesis duration on the morphology, porous structure, and crystallographic form of MnO2 powders was studied. The electrochemical reactivity of as-prepared powders was investigated in 1 mol L−1 KOH by both cyclic voltammetry and impedance spectroscopy by using a micro-cavity electrode. The results show that the best electrochemical reactivity of the MnO2 powder was obtained with synthesis duration of 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhou L, Zhang J, He J, Hu Y, Tian H (2011) Mater Res Bull 46:1714–1722

    Article  CAS  Google Scholar 

  2. Cui HJ, Huang HZ, Fu ML, Yuan BL, Pearl W (2011) Catal Commun 12:1339–1343

    Article  CAS  Google Scholar 

  3. Jou JH, Shi JW, Liu F, Fu ML (2011) J Mater Chem 21:18527–18529

    Article  Google Scholar 

  4. Cherchour N, Deslouis C, Messaoudi B, Pailleret A (2011) Electrochim Acta 56:9746–9755

    Article  CAS  Google Scholar 

  5. Messaoudi B, Joiret S, Keddam M, Takenouti H (2001) Electrochim Acta 46:2487–2498

    Article  CAS  Google Scholar 

  6. Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2011) J Mater Sci Technol 27:585–593

    Article  CAS  Google Scholar 

  7. Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2009) ACS Appl Mater Interfaces 1(2):424–432

    Article  CAS  Google Scholar 

  8. Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2007) Matér Tech 95:405–410

    Article  CAS  Google Scholar 

  9. Xiao W, Xia H, Fuh JYH, Lu L (2009) J Power Sources 193:935–938

    Article  CAS  Google Scholar 

  10. Wang X, Li Y (2003) Chem Eur J 9(1):300–306

    Article  Google Scholar 

  11. Li Y, Wang J, Zhang Y, Banis MN, Liu J, Geng D, Li R, Sun X (2012) J Colloid Interface Sci 369:123–128

    Article  CAS  Google Scholar 

  12. Gao T, Fjellvåg H, Norby P (2009) Nanotechnology 20(5):055610–055616

    Article  Google Scholar 

  13. Zhou M, Zhang X, Wang L, Wei J, Wang L, Zhu K, Feng B (2011) Mater Chem Phys 130(3):1191–1194

    Article  CAS  Google Scholar 

  14. Tang N, Tian X, Yang C, Pi Z (2009) Mater Res Bull 44:2062–2067

    Article  CAS  Google Scholar 

  15. Liu Y, Zhang M, Zhang J, Qian Y (2006) J Solid State Chem 179:1757–1761

    Article  CAS  Google Scholar 

  16. Wei M, Konishi Y, Zhou H, Sugihara H, Arakawa H (2005) Nanotechnology 16:245

    Article  CAS  Google Scholar 

  17. Pang SC, Chin SF, Ling CY (2012) J Nanomater Article ID 2012:607870

  18. Guan H, Chen G, Zhang S, Wang Y (2010) Mater Chem Phys 124:639–645

    Article  CAS  Google Scholar 

  19. Wang HE, Qian D, Lu Z, Li Y, Cheng R, Zhang W (2007) J Cryst Growth. doi:10.1016/j.jcrysgro.2007.01.034

    Google Scholar 

  20. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  21. Chabre Y, Pannetier J (1995) Prog Solid State Chem 23:1–130

    Article  CAS  Google Scholar 

  22. De Wollf PM (1959) Acta Crystallogr 12:341–345

    Article  Google Scholar 

  23. Vivier V, Cachet-Vivier C, Wu BL, Cha CS, Nedelec JY, Yu LT (1999) Electrochem Solid-State Lett 2(8):385–387

    Article  CAS  Google Scholar 

  24. Vivier V, Cachet-Vivier C, Cha CS, Nedelec JY, Yu LT (2000) Electrochem Commun 2:180–185

    Article  CAS  Google Scholar 

  25. Fu X, Feng J, Wang H, Ng KM (2009) Nanotechnology 20:375601

    Article  Google Scholar 

  26. Wang X, Li YD (2002) J Am Chem Soc 124:2880–2881

    Article  CAS  Google Scholar 

  27. Liu J, Makwana V, Cai J, Sui SL, Aindow M (2003) J Phys Chem B 107:9185–9194

    Article  CAS  Google Scholar 

  28. Zhang Z, Mu J (2007) Solid State Commun 141:427–430

    Article  CAS  Google Scholar 

  29. Ghodbane O, Pascal JL, Favier F (2009) ACS Appl Mater Interfaces 1(5):1130–1139

    Article  CAS  Google Scholar 

  30. Arnott JB, Williams RP, Pandolfo AG, Donne SW (2007) J Power Sources 165(2):581–590

    Article  CAS  Google Scholar 

  31. Qu D (2003) Electrochim Acta 48(12):1675–1684

    Article  CAS  Google Scholar 

  32. Kozawa H, Yeager JF (1965) J Electrochem Soc 112:959–963

    Article  CAS  Google Scholar 

  33. Minakshi M (2008) J Electroanal Chem 616:99–106

    Article  CAS  Google Scholar 

  34. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  35. Hong Z, Zhenhai C, Xi X (1989) J Electrochem Soc 136(10):2771–2774

    Article  Google Scholar 

  36. Balachandran D, Morgan D, Ceder G (2002) J Solid State Chem 166:91–103

    Article  CAS  Google Scholar 

  37. Tedjar F, Guitton J (1985) Surf Technol 26(2):107–115

    Article  CAS  Google Scholar 

  38. Cachet C, Belushkin A, Natkaniec I, Lecerf A, Fillaux F, Yu LT (1995) Phys B 213–214:827–829

    Article  Google Scholar 

  39. Cao YL, Yang HX, Ai XP, Xiao LF (2003) J Electroanal Chem 557:127–134

    Article  CAS  Google Scholar 

  40. Roche I, Scott K (2010) J Electroanal Chem 638:280–286

    Article  CAS  Google Scholar 

  41. Brenet JP (1979) J Power Sources 4:183–190

    Article  CAS  Google Scholar 

  42. Mao L, Sotomura T, Nakatsu K, Nobuharu K, Zhang D, Ohsaka T (2002) J Electrochem Soc 149(4):A504–A507

    Article  CAS  Google Scholar 

  43. Ruetschi P, Giovanoli R (1988) J Electrochem Soc 135(11):2663–2669

    Article  CAS  Google Scholar 

  44. Parida KM, Kanungo SB, Sant BR (1981) Electrochim Acta 26:435–443

    Article  CAS  Google Scholar 

  45. Ruetschi P (1984) J Electrochem Soc 131(12):2737–2744

    Article  CAS  Google Scholar 

  46. Burns RG (1984) Battery material symposium. In: Kozawa A, Nagayama M (eds) Vol I. Brussels 1983. BMRA, Cleveland, p 197

    Google Scholar 

  47. Petit F, Lenglet M, Arsène (1993) J Mater Res Bull 28:1093–1100

    Article  CAS  Google Scholar 

  48. Fillaux F, Cachet CH, Ouboumour H, Tomkinson J, Lévy-Clément C, Yu LT (1993) J Electrochem Soc 140(3):585–591

    Article  CAS  Google Scholar 

  49. Balachandran D, Morgan D, Ceder G, Van de Walle A (2003) J Solid-State Chem 173:462–475

    Article  CAS  Google Scholar 

  50. Ananth MV, Pethkar S, Dakshinamurthi K (1998) J Power Sources 75(2):278–282

    Article  CAS  Google Scholar 

  51. Amarilla JM, Tedjar F, Poinsignon C (1994) Electrochim Acta 39(15):2321–2331

    Article  CAS  Google Scholar 

  52. Zhang Q (2001) I. Syntheses of Manganese oxides by using microwave heating and conventional heating, II. Syntheses of nanosize materials. Thesis PHD Connecticut University

  53. Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4(3):A19–A22

    Article  CAS  Google Scholar 

  54. Devaraj S, Munichandraiah N (2005) Electrochem Solid-State Lett 8(7):A373–A377

    Article  CAS  Google Scholar 

  55. Devaraj S, Munichandraiah N (2007) J Electrochem Soc 154(10):A901–A909

    Article  CAS  Google Scholar 

  56. Reddy RN, Reddy RG (2003) J Power Sources 124:330–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was carried out in the frame of French–Algerian cooperation project CMEP-PHC Tassili N° 06 MDU 686. The authors thank the efficient assistance of all technical staffs of the LISE laboratory for the characterization of powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Benhaddad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhaddad, L., Bazin, C., Makhloufi, L. et al. Effect of synthesis duration on the morphological and structural modification of the sea urchin-nanostructured γ-MnO2 and study of its electrochemical reactivity in alkaline medium. J Solid State Electrochem 18, 2111–2121 (2014). https://doi.org/10.1007/s10008-014-2459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2459-2

Keywords

Navigation