Skip to main content
Log in

A novel multistep dip-coating method for the fabrication of anode-supported microtubular solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel multistep dip-coating method was developed and successfully applied to the fabrication of anode-supported microtubular solid oxide fuel cells (SOFCs) using carbon rods as combustible cores. The fabricated microtubular SOFCs consisted of Ni-yttria-stabilized zirconia (YSZ), YSZ, strontium-doped lanthanum manganite (LSM)–YSZ, and LSM as the anode, electrolyte, cathode, and cathode current collector materials, respectively. To investigate the role of anode porosity on cell performance, two types of anode supports were prepared: one without a pore former and the other with a 10 wt.% graphite pore former. The microstructural features of the microtubular SOFCs were examined using scanning electron microscope images whereas the electrochemical performance was characterized by electrochemical impedance spectroscopy measurements as well as IV characteristic curves. The results showed that the method used is a simple and low-cost alternative to conventional methods for the fabrication of microtubular SOFCs. We found that the anode porosity played an important role in improving the overall performance of the microtubular SOFC by reducing the concentration polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Stambouli AB, Traversa E (2002) Renew Sustain Energy Rev 6:433–455

    Article  CAS  Google Scholar 

  3. Minh NQ (2004) Solid State Ionics 174:271–277

    Article  CAS  Google Scholar 

  4. Wachsman ED, Lee KT (2011) Science 334:935–939

    Article  CAS  Google Scholar 

  5. Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Solid State Ionics 152–153:411–416

    Article  Google Scholar 

  6. McIntosh S, Gorte RJ (2004) Chem Rev 104:4845–4865

    Article  CAS  Google Scholar 

  7. Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Science 326:126–129

    Article  CAS  Google Scholar 

  8. Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z (2010) J Power Sources 195:685–702

    Article  CAS  Google Scholar 

  9. Kuchonthara P, Bhattacharya S, Tsutsumi A (2003) J Power Sources 117:7–13

    Article  CAS  Google Scholar 

  10. Kuchonthara P, Bhattacharya S, Tsutsumi A (2003) J Power Sources 124:65–75

    Article  CAS  Google Scholar 

  11. Kuchonthara P, Bhattacharya S, Tsutsumi A (2005) Fuel 84:1019–1021

    Article  CAS  Google Scholar 

  12. EG&G Technical Services (2004) Fuel cell handbook. U.S. Department of Energy, Morgantown

    Google Scholar 

  13. Blum L, Meulenberg WA, Nabielek H, Steinberger-Wilckens R (2005) Int J Appl Ceram Technol 2:482–492

    Article  CAS  Google Scholar 

  14. Kendall K (1992) In: Proc. international forum on fine ceramics. Japan Fine Ceramics Center, Nagoya

  15. Kendall K, Minh NQ, Singhal SC (2003) In: Singhal SC, Kendall K (eds) High temperature solid oxide fuel cells: fundamentals, design and applications. Oxford, Elsevier

    Google Scholar 

  16. Howe KS, Thompson GJ, Kendall K (2011) J Power Sources 196:1677–1686

    Article  CAS  Google Scholar 

  17. Compana R, Merino RI, Larrea A, Villarreal I, Orera VM (2009) J Power Sources 192:120–125

    Article  Google Scholar 

  18. Shikazono N, Sakamoto Y, Yamaguchi Y, Kasagi N (2009) J Power Sources 193:530–540

    Article  CAS  Google Scholar 

  19. Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Science 325:852–855

    Article  CAS  Google Scholar 

  20. Calise F, Restucccia G, Sammes N (2010) J Power Sources 195:1163–1170

    Article  CAS  Google Scholar 

  21. Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M (2008) Electrochem Commun 10:1381–1383

    Article  CAS  Google Scholar 

  22. Meng X, Gong X, Yang N, Tan X, Yin Y, Ma Z-F (2013) J Power Sources 237:277–284

    Article  CAS  Google Scholar 

  23. Liu Y, Hashimoto S-I, Nishino H, Takei K, Mori M, Suzuki T, Funahashi Y (2007) J Power Sources 174:95–102

    Article  CAS  Google Scholar 

  24. Luebbe H, Van herle J, Hofmann H, Bowen P, Aschauer U, Schuler A, Snijkers F, Schindler H-J, Vogt U, Lalanne C (2009) Solid State Ionics 180:805–811

    Article  CAS  Google Scholar 

  25. Lawlor V (2013) J Power Sources 240:421–441

    Article  CAS  Google Scholar 

  26. Kim SD, Hyun SH, Moon J, Kim J-H, Song RH (2005) J Power Sources 139:67–72

    Article  CAS  Google Scholar 

  27. Kikuta K, Kubota C, Takeuchi Y, Ito Y, Usui T (2010) J Eur Ceram Soc 30:927–931

    Article  CAS  Google Scholar 

  28. Li C-J, Li C-X, Xing Y-Z, Gao M, Yang G-J (2006) Solid State Ionics 177:2065–2069

    Article  CAS  Google Scholar 

  29. Dong D, Gao J, Liu X, Meng G (2007) J Power Sources 165:217–223

    Article  CAS  Google Scholar 

  30. Liu RZ, Wang SR, Huang B, Zhao CH, Li JL, Wang ZR, Wen ZY, Wen TL (2009) J Solid State Electrochem 13:1905–1911

    Article  CAS  Google Scholar 

  31. Liu RZ, Cai G, Li JL, Zhao CH, Wang SR, Wen TL, Wen ZY (2010) J Solid State Electrochem 14:1923–1928

    Article  CAS  Google Scholar 

  32. Williams MC (2007) Fuel Cells 7:78–85

    Article  CAS  Google Scholar 

  33. Wicks ZW Jr, Jones FN, Pappas SP, Wicks DA (2007) Organic coatings: science and technology. Wiley, Hoboken

    Book  Google Scholar 

  34. Ruiz-Morales JC, Marrero-López D, Gálvez-Sánchez M, Canales-Vázquez J, Savaniu C, Savvin SN (2010) Energy Environ Sci 3:1670–1681

    Article  CAS  Google Scholar 

  35. Panthi D, Tsutsumi A (2012) J Appl Electrochem 42:953–959

    Article  CAS  Google Scholar 

  36. Chan SH, Khor KA, Xia ZT (2001) J Power Sources 93:130–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS) in the form of a Grant-in-Aid for Scientific Research (number 23360434). The authors would like to express their sincere thanks to Prof. Naoki Shikazono at the University of Tokyo and Drs. Yoshinobu Fujishiro and Toshiaki Yamaguchi at the National Institute of Advanced Industrial Science and Technology (AIST) for their invaluable suggestions and discussions. The first author (D. Panthi) gratefully acknowledges the scholarship received from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan during the research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panthi, D., Tsutsumi, A. A novel multistep dip-coating method for the fabrication of anode-supported microtubular solid oxide fuel cells. J Solid State Electrochem 18, 1899–1905 (2014). https://doi.org/10.1007/s10008-014-2429-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2429-8

Keywords

Navigation