Skip to main content

Advertisement

Log in

A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  2. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  3. Kim J, Manthiram A (1997) Nature 390:265–267

    Article  CAS  Google Scholar 

  4. Meethong N, Huang HYS, Speakman SA, Carter WC, Chiang YM (2007) Adv Funct Mater 17:1115–1123

    Article  CAS  Google Scholar 

  5. Kim DH, Kim J (2006) Electrochem Solid-State Lett 9:A439–A442

    Article  CAS  Google Scholar 

  6. Fan Q, Whittingham MS (2007) Mater Res Soc Proc 972:9972–AA07–03

    Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  8. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  9. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid-State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  10. Croce F, Epifanio AD, Hassoun J, Deptula A, Olezac T, Scrosati B (2002) Electrochem Solid State Lett 5:A47–A50

    Article  CAS  Google Scholar 

  11. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kim HG (2004) Solid State Commun 129:311–314

    Article  CAS  Google Scholar 

  12. Yang S, Zivalij PY, Whittingham MS (2001) Electrochem Commun 3:505–508

    Article  CAS  Google Scholar 

  13. Franger S, Cras FL, Bourbon C, Rouault H (2003) J Power Sources 119–121:252–257

    Article  Google Scholar 

  14. Arnold G, Garche J, Hemmer R, Strobele S, Vogler C, Mehrens MW (2003) J Power Sources 119–121:247–251

    Article  Google Scholar 

  15. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 97–98:503–507

    Article  Google Scholar 

  16. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  17. Sun X, Sun K, Chen C, Sun H, Cui B (2012) Int J Mater Chem 2:218–224

    Article  CAS  Google Scholar 

  18. Toprakci O, Toprakci HAK, Ji L, Zhang X (2010) Kona 28:50–73

    Article  CAS  Google Scholar 

  19. Wang J, Sun X (2012) Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  20. Ellis B, Kan WH, Makahnouka WRM, Nazar LF (2007) J Mater Chem 17:3248–3254

    Article  CAS  Google Scholar 

  21. Chiang YM, Gozdz AM, Payne MW (2007) Nanoscale ion storage materials. U.S. Patent No. US 2007/0031732 A1

  22. Saidi MY, Huang H (2006) Synthesis of metal phosphates. US Patent No. US 2006/7060238 B2

  23. Adamson G, Barker J, Saidi MY (2006) Secondary battery electrode active materials and methods for making the same. U.S. Patent No. US 2006/7008726 B2

  24. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) J Power Sources 119–121:232–238

    Article  Google Scholar 

  25. Fey GTK, Chen YG, Kao HM (2009) J Power Sources 189:169–178

    Article  CAS  Google Scholar 

  26. Kim DK, Park HM, Jung SJ, Jeong YU, Lee JH, Kim JJ (2006) J Power Sources 159:237–240

    Article  Google Scholar 

  27. Adschiri T, Lee YW, Goto M, Takami S (2011) Green Chem 13:1380–1390

    Article  CAS  Google Scholar 

  28. Chen J (2013) Materials 6:156–183

    Article  Google Scholar 

  29. Chen J (2013) Recent Pat Nanotechnol 7:2–12

    Article  CAS  Google Scholar 

  30. Schall N, Nuspl G, Christian V, Wimmer L, Eisgruber M (2006) Crystalline ion-conducting material and method for the production thereof. Eur. Pat. WO2006105848

  31. Wu B, Ren Y, Li N (2011) In: Soylu S (ed), Electric vehicles—the benefits and barriers, ISBN: 978-953-307-287-6, InTech. http://www.intechopen.com/books/electric-vehicles-the-benefits-and-barriers/lifepo4-cathode-material

  32. Wang Y, Wang J, Yang J, Nuli Y (2006) Adv Funct Mater 16:2135–2140

    Article  CAS  Google Scholar 

  33. Zhang J, Zhuo L, Zhang L, Wu C, Zhang X, Wang L (2011) J Mater Chem 21:6975–6980

    Article  CAS  Google Scholar 

  34. Barpanda P, Ye T, Chung SC, Yamada Y, Nishimura S, Yamada A (2012) J Mater Chem 22:13455–13459

    Article  CAS  Google Scholar 

  35. Wang Y, Dickerson JC. Methods for the production of silver nanowires. U.S. Patent No. US2009/0196788

  36. Chen J, Wiley BJ, Xia Y (2007) Langmuir 23:4120–4129

    Article  CAS  Google Scholar 

  37. Li C, Cai WP, Cao BQ, Sun FQ, Li Y, Kan CX, Zhang LD (2006) Adv Funct Mater 16:83–90

    Article  CAS  Google Scholar 

  38. Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Angew Chem Int Ed 49:8738–8742

    Article  CAS  Google Scholar 

  39. Fievet F, Lagier JP, Figlarz M (1989) MRS Bull 14:29–34

    Article  CAS  Google Scholar 

  40. Feldmann C (2003) Adv Funct Mater 13:101–107

    Article  CAS  Google Scholar 

  41. Feldmann C, Jungk HO (2001) Angew Chem Int Ed 40:359–362

    Article  CAS  Google Scholar 

  42. Lim J, Mathew V, Kim K, Moon J, Kim J (2011) J Electrochem Soc 158:A736–A740

    Article  CAS  Google Scholar 

  43. Kim D, Lim J, Mathew V, Koo B, Paik Y, Ahn D, Paek SM, Kim J (2012) J Mater Chem 22:2624–2631

    Article  CAS  Google Scholar 

  44. Kim D, Lim J, Choi E, Gim J, Mathew V, Paik Y, Jung H, Lee W, Ahn D, Paek S, Kim J (2010) Surf Rev Lett 17:111–119

    Article  CAS  Google Scholar 

  45. Gim J, Mathew V, Lim J, Song J, Baek S, Kang J, Ahn D, Song SJ, Yoon H, Kim J (2012) Sci Rep 2:946

    Article  Google Scholar 

  46. Laoutid F, Bonnaud L, Alexandre M, Cuesta JML, Dubois P (2009) Mater Sci Eng R 63:100–125

    Article  Google Scholar 

  47. Shiratsuchi T, Okada S, Yamaki JI, Yamashita S, Nishida T (2007) J Power Sources 173:979–984

    Article  CAS  Google Scholar 

  48. Carvajal JR (1990) Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, pp 127

  49. Larson AC, Von Dreele RB (1994) Los Alamos National Laboratory Report LAUR 86–748, Los Alamos National Laboratory

  50. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  51. Rousse G, Carvajal JR, Patoux S, Masquelier C (2003) Chem Mater 15:4082–4090

    Article  CAS  Google Scholar 

  52. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid-State Lett 9:A352–A355

    Article  CAS  Google Scholar 

  53. Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Electrochem Solid-State Lett 10:A134–A138

    Article  CAS  Google Scholar 

  54. Chen J, Whittingham MS (2006) Electrochem Commun 8:855–858

    Article  CAS  Google Scholar 

  55. Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Electrochem Commun 4:239–244

    CAS  Google Scholar 

  56. Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA (2005) J Mater Chem 15:3362–3379

    Article  CAS  Google Scholar 

  57. Chen JJ, Vacchio MJ, Wang SJ, Chernova N, Zavalij PY, Whittingham MS (2008) Solid State Ionics 178:1676–1693

    Article  CAS  Google Scholar 

  58. Tucker MC, Doeff MM, Richardson TJ, Fiñones R, Cairns EJ, Reimer JA (2002) J Am Chem Soc 124:3832–3833

    Article  CAS  Google Scholar 

  59. Hamelet S, Gibot P, Cabanas MC, Bonnin D, Grey CP, Cabana J, Leriche JB, Carvajal JR, Courty M, Levasseur S, Carlach P, Thournout MV, Tarascon JM, Masquelier C (2009) J Mater Chem 19(2009):3979–3991

    Article  CAS  Google Scholar 

  60. Davis LJM, Heinma I, Ellis BL, Nazar LF, Goward GR (2011) Phys Chem Chem Phys 13:5171–5177

    Article  CAS  Google Scholar 

  61. Ramana CV, Salah AA, Utsunomiya S, Morhange JF, Mauger A, Gendron F, Julien CM (2007) J Phys Chem C 111:1049–1054

    Article  CAS  Google Scholar 

  62. Wang Z, Su S, Yu C, Chen Y, Xia D (2008) J Power Sources 184:633–636

    Article  CAS  Google Scholar 

  63. Li D, Huang Y, Sharma N, Chen Z, Jia D, Guo Z (2012) Phys Chem Chem Phys 14:3634–3639

    Article  CAS  Google Scholar 

  64. Saravanan K, Reddy MV, Balaya P, Gong H, Chowdari BVR, Vittal JJ (2009) J Mater Chem 19:605–610

    Article  CAS  Google Scholar 

  65. Inoue K, Fujieda S, Shinoda K, Suzuki S, Waseda Y (2010) Mater Trans 51:2220–2224

    Article  CAS  Google Scholar 

  66. Deb A, Bergmann U, Cairns EJ, Cramer SP (2004) J Phys Chem B 108:7046–7051

    Article  CAS  Google Scholar 

  67. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) 196th Meeting of the Electrochemical Society, Hawaii, Abstract # 127

  68. Baker J, Saidi MY, Swoyer JL (2003) Electrochem Solid State Lett 6:A53–A55

    Article  Google Scholar 

  69. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) J Power Sources 153:274–280

    Article  CAS  Google Scholar 

  70. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  71. Su J, Wu XL, Yang CP, Lee JS, Kim J, Guo YG (2012) J Phys Chem C 116:5019–5024

    Article  CAS  Google Scholar 

  72. Toprakci O, Toprakci HAK, Ji L, Xu G, Lin Z, Zhang X (2012) ACS Appl Mater Interfaces 4:1273–1280

    Article  CAS  Google Scholar 

  73. Sinha NN, Shivakumara C, Munichandraiah C (2010) ACS Appl Mater Interfaces 2:2031–2038

    Article  CAS  Google Scholar 

  74. Vu A, Stein A (2011) Chem Mater 23:3237–3245

    Article  CAS  Google Scholar 

  75. Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Chem Mater 21:5300–5306

    Article  CAS  Google Scholar 

  76. Choi ES, Kim DH, Woo CH, Choi CH, Kim J (2010) J Nanosci Nanotechnol 10:3416–3419

    Article  CAS  Google Scholar 

  77. Kim DH, Kim TR, Im JS, Kang JW, Kim J (2007) Phys Scr T129:31–34

    Article  CAS  Google Scholar 

  78. Lim J, Choi E, Kim D, Choi C, Kim J (2011) J Nano Res 13:21–26

    Article  CAS  Google Scholar 

  79. Kim DH, Kang JW, Jung IO, Im JS, Kim EJ, Song SJ, Lee JS, Kim J (2008) J Nanosci Nanotechnol 8:5376–5379

    Article  CAS  Google Scholar 

  80. Murugan AV, Muraliganth T, Manthiram A (2008) J Phys Chem C 112:14665–14671

    Article  CAS  Google Scholar 

  81. Yang MR, Teng TH, Wu SH (2006) J Power Sources 159:307–311

    Article  CAS  Google Scholar 

  82. Konarova M, Taniguchi I (2008) Mater Res Bull 43:3305–3317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Industrial Strategic Technology Development Program (10045401, Development of high-voltage multitransition metal phosphate cathode material) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea). Also, this work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaekook Kim.

Additional information

Mathew and Gim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, V., Gim, J., Kim, E. et al. A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. J Solid State Electrochem 18, 1557–1567 (2014). https://doi.org/10.1007/s10008-013-2378-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2378-7

Keywords

Navigation