Skip to main content
Log in

Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Based on the extraordinarily properties of graphene, cobalt oxide nanoparticles (CoO x NPs)/graphene-modified electrode was prepared by electrodeposition of CoO x NPs on the glassy carbon surface previously modified with electrochemically reduced graphene oxide (ERGO), which was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy. It was found that a large amount of CoO x NPs with diameter less than 100 nm was uniformly grown on the surface of graphene nanosheets. The as-prepared CoO x NPs/ERGO hybrids were applied to construct an enzyme-free sensor for glucose detection in alkaline solution. The developed glucose sensor shows a short response time (less than 5 s), a high sensitivity of 79.3 μA mM-1 cm-2, a detection limit of 2 μM (S/N = 3), and good selectivity to prevent from the interference of some species including ascorbic acid, uric acid, dopamine, and sodium chloride. Importantly, favorable reproducibility and long-term performance stability were also obtained. Application of the proposed sensor in monitoring urine glucose was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Song YY, Yang C, Xia XH (2007) Electrochem Commun 9:981–988

    Article  CAS  Google Scholar 

  2. Heller A, Feldman B (2008) Chem Rev 108:2482–2505

    Article  CAS  Google Scholar 

  3. Evans ND, Rolinski OJ, Birch DJS (2005) Biosens Bioelectron 20:2555–2565

    Article  Google Scholar 

  4. Steiner MS, Duerkop A, Wolfbeis OS (2011) Chem Soc Rev 40:4805–4839

    Article  CAS  Google Scholar 

  5. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Microchim Acta 180:161–186

    Article  CAS  Google Scholar 

  6. Nie H, Yao Z, Zhou X, Yang Z, Huang S (2011) Biosens Bioelectron 30:28–34

    Article  CAS  Google Scholar 

  7. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON (2010) Biosens Bioelectron 25:1254–1263

    Article  CAS  Google Scholar 

  8. Liu A, Ren Q, Xu T, Yuan M, Tang W (2012) Sens Actuators B Chem 162:135–142

    Article  CAS  Google Scholar 

  9. Park S, Chung TD, Kim HC (2003) Anal Chem 75:3046–3049

    Article  CAS  Google Scholar 

  10. Quan H, Park SU, Park J (2010) Electrochim Acta 55:2232–2237

    Article  CAS  Google Scholar 

  11. Gutés A, Carraro C, Maboudian R (2011) Electrochim Acta 56:5855–5859

    Article  Google Scholar 

  12. Niu X, Lan M, Zhao H, Chen C (2013) Anal Chem 85:3561–3569

    Article  CAS  Google Scholar 

  13. Zhou X, Nie H, Yao Z, Dong Y, Yang Z, Huang S (2012) Sens Actuators B Chem 168:1–7

    Article  CAS  Google Scholar 

  14. Zhang X, Wang L, Ji R, Yu L, Wang G (2012) Electrochem Commun 24:53–56

    Article  Google Scholar 

  15. Zhang Y, Wang Y, Jia J, Wang J (2012) Sens Actuators B Chem 171–172:580–587

    Article  Google Scholar 

  16. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Biosens Bioelectron 26:542–548

    Article  CAS  Google Scholar 

  17. Wang JP, Thomas DF, Chen AC (2008) Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  18. Yeo I-H, Johnson DC (2001) J Electroanal Chem 495:110–119

    Article  CAS  Google Scholar 

  19. Tominaga M, Shimazoe T, Nagashima M, Kusuda H, Kubo A, Kuwahara Y, Taniguchi I (2006) J Electroanal Chem 590:37–46

    Article  CAS  Google Scholar 

  20. Hou C, Xu Q, Yin L, Hu X (2012) Analyst (Cambridge, U K) 137:5803–5808

    Article  CAS  Google Scholar 

  21. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  22. Lee KK, Loh PY, Sow CH, Chin WS (2012) Electrochem Commun 20:128–132

    Article  CAS  Google Scholar 

  23. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  24. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) Adv Funct Mater 21:2989–2996

    Article  CAS  Google Scholar 

  25. Cao L, Liu Y, Zhang B, Lu L (2010) Appl Mater Interfaces 2:2339–2346

    Article  CAS  Google Scholar 

  26. Wu G, Wu Y, Liu X, Rong M, Chen X, Chen X (2012) Anal Chim Acta 745:33–37

    Article  CAS  Google Scholar 

  27. Hu Y, Jin J, Wu P, Zhang H, Cai C (2010) Electrochim Acta 56:491–500

    Article  CAS  Google Scholar 

  28. Li SJ, Shi YF, Liu L, Song LX, Pang H, Du JM (2012) Electrochim Acta 85:628–635

    Article  CAS  Google Scholar 

  29. Zhao Y, Song X, Song Q, Yin Z (2012) CrystEngComm 14:6710–6719

    Article  CAS  Google Scholar 

  30. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Electrochim Acta 88:708–712

    Article  CAS  Google Scholar 

  31. Zhu C, Zhai J, Wen D, Dong S (2012) J Mater Chem 22:6300–6306

    Article  CAS  Google Scholar 

  32. Dong X, Ma Y, Zhu G, Huang Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) J Mater Chem 22:17044–17048

    Article  CAS  Google Scholar 

  33. Guo C, Yang H, Sheng Z, Lu Z, Song Q, Li C (2010) Angew Chem, Int Ed 49:3014–3017

    Article  CAS  Google Scholar 

  34. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, Huang Y (2013) Anal Chim Acta 796:92–100

    Article  CAS  Google Scholar 

  35. Xiang C, Li M, Zhi M, Manivannan A, Wu N (2013) J Power Sources 226:65–70

    Article  CAS  Google Scholar 

  36. Wang J, Zhou J, Hu Y, Regier T (2013) Energy Environ Sci 6:926–934

    Article  CAS  Google Scholar 

  37. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Google Scholar 

  38. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Anal Chim Acta 594:24–31

    Article  CAS  Google Scholar 

  39. Salimi A, Mamkhezri H, Hallaj R, Soltanian S (2008) Sens Actuators B Chem 129:246–254

    Article  CAS  Google Scholar 

  40. Xia C, Ning W (2010) Electrochem Commun 12:1581–1584

    Article  CAS  Google Scholar 

  41. Wang G, Wei T, Zhang W, Zhang X, Fang B, Wang L (2010) Microchim Acta 168:87–92

    Article  CAS  Google Scholar 

  42. Wang CX, Yin LW, Zhang L, Gao R (2010) J Phys Chem C 114:4408–4413

    Article  CAS  Google Scholar 

  43. Wang X, Hu C, Liu H, Du G, He X, Xi Y (2010) Sens Actuators B Chem 144:220–225

    Article  CAS  Google Scholar 

  44. Kung CW, Lin CY, Lai YH, Vittal R, Ho KC (2011) Biosens Bioelectron 27:125–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 21105002, 21201010), the fund project for Henan Key Technologies R&D Programme (122102310516, 12B150002), and the Innovative Foundation for the College students of China and Anyang Normal University (201310479012, ASCX/2013-Z43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Juan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SJ., Du, JM., Chen, J. et al. Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. J Solid State Electrochem 18, 1049–1056 (2014). https://doi.org/10.1007/s10008-013-2354-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2354-2

Keywords

Navigation