Skip to main content
Log in

Differential capacitance of ionic liquid interface with graphite: the story of two double layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We combine electronic density functional theory for the screening properties of graphite with a mean-field theory of the double layer in ionic liquids to reveal what underpins the morphology of the voltage dependence of electrical capacitance of a flat graphite/ionic liquids interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There are currently hot discussions about the degree of ionic dissociation in RTILs., including the extreme point of view that most of the ions in RTILs are bound in ion pairs, giving rise to a dielectric constant of about 10, with only a small number of virtually free moving ions, bringing the properties of RTILs close to those of dilute ionic solutions [14]. However, this point of view is at odds with a number of experimental facts and computer simulations[15]. Therefore, before further tests of this hypothesis have been performed, we will not explore the opportunity of adopting much lower effective concentrations of free ions, which would bring \(C_{0}\) to much more reasonable, smaller values. Small values of effective concentrations of ions, would cause small values of \(\gamma \), which would make all the capacitance curves U-shaped; moreover the total capacitance of the interface would be entirely dominated by the double layer capacitance in RTILs, and there would be no effect of the substrate.

References

  1. Kornyshev A (2007) J Phys Chem B 111:5545–5557

    Article  CAS  Google Scholar 

  2. Fedorov MV, Kornyshev AA (2008) Electrochim Acta 53:6835–6840

    Article  CAS  Google Scholar 

  3. Bazant MZ, Storey BD, Kornyshev AA (2011) Phys Rev Lett 106(046102):1–4

    Google Scholar 

  4. Georgi N, Kornyshev AA, Fedorov MV (2010) J Electroanal Chem 649:261–267

    Article  CAS  Google Scholar 

  5. Fedorov MV, Georgi N, Kornyshev AA (2010) Electrochem Commun 12:296–299

    Article  CAS  Google Scholar 

  6. Fedorov MV, Kornyshev AA (in press) Chem Rev

  7. Merlet C, Rotenberg B, Madden PA, Salanne M (2013) Phys. Chem Chem Phys 15:15781–15792

    Article  CAS  Google Scholar 

  8. Luque NB, Schmickler W (2012) Electrochim Acta 71:82–85

    Article  CAS  Google Scholar 

  9. Gerischer H (1985) J Phys Chem 89:4249–4251

    Article  CAS  Google Scholar 

  10. Gerischer H, McIntyre HR, Scherson D, Storck W (1987) J Phys Chem 91:1930–1935

    Article  CAS  Google Scholar 

  11. Randin JP, Yeager E (1972) Electroanal Chem 36:257–276

    Article  CAS  Google Scholar 

  12. Islam M, Alam M, Ohsaka T (2008) J Phys Chem C 112:16568–16574

    Article  CAS  Google Scholar 

  13. Locket V, Sedev R, Ralston J, Horne M, Rodopoulos T (2008) J Phys Chem C 112:7486–7495

    Article  Google Scholar 

  14. Gebbie MA, Valtiner M, Banquy X, Fox ET, Henderson WA, Israelachvili JN (2013) PNAS 110:9674–9679

    Article  CAS  Google Scholar 

  15. Perkin S, Compton R, Slanne M, Madden P (2013) PNAS. doi:10.1073/pnas.1314188110

  16. Daikhin LI, Kornyshev AA, Urbakh M (1996) Phys Rev E 53:6192–6199

    Article  CAS  Google Scholar 

  17. Hu Z, Vatamanu J, Borodin O, Bedrov D (2013) PCCP 15:14234–14247

    Article  CAS  Google Scholar 

  18. Hu Z, Vatamanu J, Borodin O, Bedrov D (2012) J Phys Chem C 116:7940–7951

    Google Scholar 

Download references

Acknowledgments

AAK is thankful to EPSRC for grant EP/H004319/1. WS and NBL acknowledge support from the DFG under FOR 1376, and thank the Baden- Württemberg grid for a generous grant of computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kornyshev or W. Schmickler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornyshev, A.A., Luque, N.B. & Schmickler, W. Differential capacitance of ionic liquid interface with graphite: the story of two double layers. J Solid State Electrochem 18, 1345–1349 (2014). https://doi.org/10.1007/s10008-013-2316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2316-8

Keywords

Navigation