Skip to main content
Log in

Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen-rich activated carbon with a three-dimensional network structure was prepared by chemical activation of coal tar residues with potassium hydroxide and subsequent carbonization treatment. Nanostructured Fe3O4/AC composites were then prepared by simple chemical coprecipitation method and were used as active electrode materials for supercapacitors. The electrochemical behaviors of Fe3O4/AC nanocomposites were characterized by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy in 1.0 M Na2SO3 electrolyte. It was shown that the specific capacitance of Fe3O4/AC nanocomposites reached 150 F g−1 at a current density of 3.0 A g−1 and was a great improvement over Fe3O4 or AC alone. Furthermore, as-prepared Fe3O4/AC nanocomposites exhibited long cycle life without obvious capacitance fading even after 1,000 charge/discharge cycles. Compared with pure Fe3O4 and AC, the significant enhanced electrochemical performance of Fe3O4/AC nanocomposites could be reasonably attributed to the positive synergetic effect between Fe3O4 and AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366–367

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  4. Kibi Y, Saito T, Kurata M, Tabuchi J, Ochi A (1996) J Power Sources 60:219–224

    Article  CAS  Google Scholar 

  5. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  6. Conway BE (1991) J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  7. Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  8. Mitani S, Lee SL, Yoon SH, Korai Y, Mochida I (2004) J Power Sources 133:298–301

    Article  CAS  Google Scholar 

  9. Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  10. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  11. Liu HT, He P, Li ZY, Liu Y, Li JH (2006) Electrochim Acta 51:1925–1931

    Article  CAS  Google Scholar 

  12. Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) J Power Sources 190:587–591

    Article  CAS  Google Scholar 

  13. Rodriguez-Reinoso F, Molina-Sabio M (1992) Carbon 30:1111–1118

    Article  CAS  Google Scholar 

  14. Caturla F, Molina-Sabio M, Rodriguez-Reinoso F (1991) Carbon 29:999–1007

    Article  CAS  Google Scholar 

  15. LLLan-Gomez MJ, Garcia-Garcia A, Salinas-Martinez DC, Linares-Solano A (1996) Energy Fuels 10:1108–1114

    Article  Google Scholar 

  16. Ahmadpour A, Do DD (1996) Carbon 34:471–479

    Article  CAS  Google Scholar 

  17. Wu QF, Liu YF, Hu ZH (2013) J Solid State Electrochem 17:1711–1716

    Article  CAS  Google Scholar 

  18. Wang Q, Wen ZH, Li JH (2006) Adv Funct Mater 16:2141–2146

    Article  CAS  Google Scholar 

  19. Lu XH, Zheng DZ, Zhai T, Liu ZQ, Huang YY, Xie SL, Tong YX (2011) Energy Environ Sci 4:2915–2921

    Article  CAS  Google Scholar 

  20. Adekunle AS, Ozoemena KI, Agboola BO (2013) J Solid State Electrochem 17:1311–1320

    Article  CAS  Google Scholar 

  21. He P, Xie ZW, Chen YT, Dong FQ, Liu HT (2012) Mater Chem Phys 137:576–579

    Article  CAS  Google Scholar 

  22. Shi WH, Zhu JX, Sim DH, Tay YY, Lu ZY, Zhang XJ, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan QY (2011) J Mater Chem 21:3422–3427

    Article  CAS  Google Scholar 

  23. Chen ML, He YJ, Chen XW, Wang JH (2012) Langmuir 28:16469–16476

    Article  CAS  Google Scholar 

  24. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  25. Mu JB, Chen B, Guo ZC, Zhang MY, Zhang ZY, Zhang P, Shao CL, Liu YC (2011) Nanoscale 3:5034–5040

    Article  CAS  Google Scholar 

  26. Gao L, Dong FQ, Dai QW, Zhong GQ, Zhang W (2012) J Funct Mater 43:152–155

    CAS  Google Scholar 

  27. Kim YH, Park SJ (2011) Curr Appl Phys 11:462–466

    Article  Google Scholar 

  28. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) J Power Sources 113:173–178

    Article  CAS  Google Scholar 

  29. He CX, Song SQ, Liu JC, Maragou V, Tsiakaras P (2010) J Power Sources 195:7409–7414

    Article  CAS  Google Scholar 

  30. Teo PS, Lim HN, Huang NM, Chia CH, Harrison I (2012) Ceram Int 38:6411–6416

    Article  CAS  Google Scholar 

  31. Liu Y, Jiang W, Wang Y, Zhang XJ, Song D, Li FS (2009) J Magn Mater 321:408–412

    Article  CAS  Google Scholar 

  32. Sun XM, Liu JF, Li YD (2006) Chem Mater 18:3486–3494

    Article  CAS  Google Scholar 

  33. Luo LB, Yu SH, Qian HS, Guo JY (2006) Chem Commun 1:793–795

    Article  Google Scholar 

  34. Ko JM, Kim KM (2009) Mater Chem Phys 114:837–841

    Article  CAS  Google Scholar 

  35. Nian YR, Teng HS (2002) J Electrochem Soc 149:A1008–A1014

    Article  CAS  Google Scholar 

  36. Zhang K, Zhang LL, Zhao XS, Wu JS (2010) Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  37. Srinivasan V, Weidner JW (2002) J Power Sources 108:15–20

    Article  CAS  Google Scholar 

  38. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13101–13107

    Google Scholar 

  39. Liu X, Zhang N, Ni JF, Gao LJ (2013) J Solid State Electrochem 17:1939–1944

    Article  CAS  Google Scholar 

  40. Zhao X, Johnston C, Crossley A, Grant PS (2010) J Mater Chem 20:7637–7644

    Article  CAS  Google Scholar 

  41. Tai ZX, Yan XB, Xue QJ (2012) J Electrochem Soc 159:A1702–A1709

    Article  CAS  Google Scholar 

  42. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  43. Yan J, Wei T, Shao B, Fan ZG, Qian WZ, Zhang MI, Wei F (2010) Carbon 48:487–493

    Article  CAS  Google Scholar 

  44. Zhao X, Johnston C, Grant PS (2009) J Mater Chem 19:8755–8760

    Article  CAS  Google Scholar 

  45. Chen WC, Wen TC, Teng HS (2003) Electrochim Acta 48:641–649

    Article  CAS  Google Scholar 

  46. Liu NP, Shen J, Liu D (2013) Microporous Mesoporous Mater 167:176–181

    Article  CAS  Google Scholar 

  47. Yan J, Fan ZG, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  48. Wen ZH, Li JH (2009) J Mater Chem 19:8707–8713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Project of Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education (11zxgk11) and the Foundation from the Technology R&D Program of Sichuan Province (No. 2010GZ0300). We are also grateful for the help of Analytical and Testing Center of Southwest University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., He, P., Zhao, X. et al. Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors. J Solid State Electrochem 18, 665–672 (2014). https://doi.org/10.1007/s10008-013-2303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2303-0

Keywords

Navigation