Skip to main content

Advertisement

Log in

A facile nitrogen-doped carbon encapsulation of CoFe2O4 nanocrystalline for enhanced performance of lithium ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped (N-doped) carbon encapsulation of CoFe2O4 nanocrystalline is achieved by a simple pressure-assisted pyrrole pyrolysis method. The CoFe2O4/N-doped carbon nanocomposite (CFO/NC) delivers a capacity of 646.2 mAh g–1 after 80 cycles at 0.1 C, exhibits stable cycling performance at various rates from 0.2 to 1.6 C and retains a capacity of 662.8 mAh g–1 as the rate returns back to 0.1 C, showing significantly improved lithium storage reversibility compared to the bare CFO. A different lithiation mechanism of CFO/NC above and below the plateau relative to CFO in the first discharge is analyzed in detail based on the potential profiles and cyclic voltammogram curves. Morphology characterization of the cycled electrodes confirms much better integrity of CFO/NC electrode due to the buffer effect of N-doped carbon coating. Electronic conductivity and electrochemical impedance spectroscopy measurements indicate enhanced electrode reaction kinetics of CFO/NC. All the results contribute to its improved electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma Y, Zhang C, Ji G, Lee JY (2012) J Mater Chem 22:7845–7850

    Article  CAS  Google Scholar 

  2. Xiong QQ, Tu JP, Lu Y, Chen J, Yu YX, Qiao YQ, Wang XL, Gu CD (2012) J Phys Chem C 116:6495–6502

    Article  CAS  Google Scholar 

  3. Cao HQ, Liang RL, Qian D, Shao J, Qu MZ (2011) J Phys Chem C 115:24688–24695

    Article  CAS  Google Scholar 

  4. Xie KY, Lu ZG, Huang HT, Lu W, Lai YQ, Lei J, Zhou LM, Liu YX (2012) J Mater Chem 22:5560–5567

    Article  CAS  Google Scholar 

  5. Hao QY, Lei DN, Yin XM, Zhang M, Liu S, Li QH, Chen LB, Wang TH (2011) J Solid State Electrochem 15:2563–2569

    Article  CAS  Google Scholar 

  6. Xiong QQ, Lu Y, Wang XL, Gu CD, Qiao YQ, Tu JP (2012) J Alloys Compd 536:219–225

    Article  CAS  Google Scholar 

  7. Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  8. Lavela P, Tirado JL (2007) J Power Sources 172:379–387

    Article  CAS  Google Scholar 

  9. Wang Y, Su DW, Ung A, Ahn J, Wang GX (2012) Nanotechnology 23:055402–055407

    Article  CAS  Google Scholar 

  10. Wu LJ, Xiao QZ, Li ZH, Lei GT, Zhang P, Wang L (2012) Solid State Ionics 215:24–28

    Article  CAS  Google Scholar 

  11. Xia H, Zhu DD, Fu YS, Wang X (2012) Electrochim Acta 83:166–174

    Article  CAS  Google Scholar 

  12. Zhang M, Jia MQ, Jin YH, Wen QQ, Chen C (2013) J Alloys Compd 566:131–136

    Article  CAS  Google Scholar 

  13. Zhang ZL, Wang YH, Zhang MJ, Tan QQ, Lv X, Zhong ZY, Su FB (2013) J Mater Chem A 1:7444–7450

    Article  CAS  Google Scholar 

  14. Vidal-Abarca C, Lavela P, Tirado JL (2010) J Phys Chem C 114:12828–12832

    Article  CAS  Google Scholar 

  15. Jin LM, Qiu YC, Deng H, Li WS, Li H, Yang SH (2011) Electrochim Acta 56:9127–9132

    Article  CAS  Google Scholar 

  16. Xing Z, Ju ZC, Yang J, Xu HY, Qian YT (2013) Electrochim Acta 102:51–57

    Article  CAS  Google Scholar 

  17. Guo XW, Lu X, Fang XP, Mao Y, Wang ZX, Chen LQ, Xu XX, Yang H, Liu YN (2010) Electrochem Commun 12:847–850

    Article  CAS  Google Scholar 

  18. Deng YF, Zhang QM, Tang SD, Zhang LT, Deng SN, Shi ZC, Chen GH (2011) Chem Commun 47:6828–6830

    Article  CAS  Google Scholar 

  19. Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) J Mater Chem 21:14999–15008

    Article  CAS  Google Scholar 

  20. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  21. Ding ZJ, Zhao L, Suo LM, Jiao Y, Meng S, Hu YS, Wang ZX, Chen LQ (2011) Phys Chem Chem Phys 13:15127–15133

    Article  CAS  Google Scholar 

  22. Mao Y, Duan H, Xu B, Zhang L, Hu YS, Zhao CC, Wang ZX, Chen LQ, Yang YS (2012) Energy Environ Sci 5:7950–7955

    Article  CAS  Google Scholar 

  23. Liu H, Zhang Y, Li RY, Sun XL, Desilets S, Abou-Rachid H, Jaidann M, Lussier LS (2010) Carbon 48:1498–1507

    Article  CAS  Google Scholar 

  24. Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  25. Chung FH (1974) J Appl Cryst 7:519–525

    Article  Google Scholar 

  26. Chung FH (1974) J Appl Cryst 7:526–531

    Article  Google Scholar 

  27. Robertson J (2002) Mater Sci Eng R 37:129–281

    Article  Google Scholar 

  28. Han FD, Bai YJ, Liu R, Yao B, Qi YX, Lun N, Zhang JX (2011) Adv Energy Mater 1:798–801

    Article  CAS  Google Scholar 

  29. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Adv Mater 24:2047–2050

    Article  Google Scholar 

  30. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Adv Mater 22:E170–E192

    Article  CAS  Google Scholar 

  31. Thackeray MM (1999) J Am Ceram Soc 82:3347–3354

    Article  CAS  Google Scholar 

  32. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) Solid State Sci 5:895–904

    Article  CAS  Google Scholar 

  33. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM (2002) J Electrochem Soc 149:A627–A634

    Article  CAS  Google Scholar 

  34. Jamnik J, Maier J (2003) Phys Chem Chem Phys 5:5215–5220

    Article  CAS  Google Scholar 

  35. Balaya P, Li H, Kienle L, Maier J (2003) Adv Funct Mater 13:621–625

    Article  CAS  Google Scholar 

  36. Bulusheva LG, Okotrub AV, Kurenya AG, Zhang HK, Zhang HJ, Chen XH, Song HH (2011) Carbon 49:4013–4023

    Article  CAS  Google Scholar 

  37. Wang GX, Shen XP, Yao J, Park J (2009) Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  38. Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003) J Electrochem Soc 150:A133–A139

    Article  CAS  Google Scholar 

  39. Yuan SM, Zhou Z, Li G (2011) CrystEngComm 13:4709–4713

    Article  CAS  Google Scholar 

  40. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Adv Funct Mater 18:3941–3946

    Article  CAS  Google Scholar 

  41. Zhang M, Lei D, Yin XM, Chen LB, Li QH, Wang YG, Wang TH (2010) J Mater Chem 20:5538–5543

    Article  CAS  Google Scholar 

  42. Wu FD, Wang Y (2011) J Mater Chem 21:6636–6641

    Article  CAS  Google Scholar 

  43. Zhu JX, Zhu T, Zhou XZ, Zhang YY, Lou XW, Chen XD, Zhang H, Hng HH, Yan QY (2011) Nanoscale 3:1084–1089

    Article  CAS  Google Scholar 

  44. Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  45. Kang E, Jung YS, Kim GH, Chun J, Wiesner U, Dillon AC, Kim JK, Lee J (2011) Adv Funct Mater 21:4349–4357

    Article  CAS  Google Scholar 

  46. Xiang JY, Tu JP, Qiao YQ, Wang XL, Zhong J, Zhang D, Gu CD (2011) J Phys Chem C 115:2505–2513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Funds for Distinguished Young Scholars (Grant No. 51025211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Z., Yao, B., Feng, J. et al. A facile nitrogen-doped carbon encapsulation of CoFe2O4 nanocrystalline for enhanced performance of lithium ion battery anodes. J Solid State Electrochem 18, 19–27 (2014). https://doi.org/10.1007/s10008-013-2234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2234-9

Keywords

Navigation