Skip to main content
Log in

Pure copper vs. mixed copper and palladium hexacyanoferrates for glucose biosensing applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A glucose amperometric biosensor was developed. Glucose oxidase enzyme was immobilized by means of a Nafion membrane on glassy carbon modified with an electrochemically deposited mixed Cu and Pd hexacyanoferrate (CuPdHCF). According to the data provided by X-ray atomic spectroscopy measurements, this Cu- and Pd-based hexacyanoferrate is likely to be a mixture of single CuHCF and PdHCF pure phases. The biosensor performances were evaluated by recording the steady-state currents due to submillimolar additions of glucose to a potassium buffer solution (pH 5.5) and exploiting the electrocatalytic reduction of the enzymatically produced hydrogen peroxide. The CuPdHCF-based biosensor exhibited a sensitivity of 8.1 ± 0.6 A M−1 m−2, a limit of detection of 1.4 × 10−5 M, and a linear response range extending between 5 × 10−5 and 4 × 10−4 M, with a dynamic response range up to 4 × 10−3 M glucose. Electrode sensitivity and signal stability resulted more satisfactory as compared to those of a CuHCF-based biosensor fabricated according to the same procedure. The selectivity was investigated through an interference study. The response to easily oxidizable species was found to be low enough to allow glucose determination in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kulesza P, Malik MA, Shorek J, Miecznikowski K, Zamponi S, Berrettoni M, Giorgetti M, Marassi R (1999) J Electrochem Soc 146:3757–3761

    Article  CAS  Google Scholar 

  2. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870–1876

    Article  CAS  Google Scholar 

  3. Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A, Saladino L, Caponetti E (2010) J Phys Chem C 114:6401–6407

    Article  CAS  Google Scholar 

  4. Widmann A, Kahlert H, Petrovic-Prelevic I, Wulff H, Yakhmi JV, Bagkar N, Scholz F (2002) Inorg Chem 41:5706–5715

    Article  CAS  Google Scholar 

  5. De Tacconi NR, Rajeshwar K (2003) Chem Mater 15:3046–3062

    Article  Google Scholar 

  6. Tokoro H, Ohkoshi S-I (2011) Dalton Trans 40:6825–6833

    Article  CAS  Google Scholar 

  7. Chen L, Wang X, Zhang X, Zhang H (2012) J Mater Chem 22:22090–22096

    Article  CAS  Google Scholar 

  8. Karyakin AA, Karyakina EE, Gorton L (1999) Electrochem Commun 1:78–82

    Article  CAS  Google Scholar 

  9. Malinauskas A, Araminaitė R, Mickevičiūtė G, Garjonytė R (2004) Mat Sci Eng C 24:513–519

    Article  Google Scholar 

  10. Pauliukaite R, Florescu M, Brett CMA (2005) J Solid State Electrochem 9:354–362

    Article  CAS  Google Scholar 

  11. Karyakin AA (2001) Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  12. Moscone D, D’Ottavi D, Compagnone D, Palleschi G (2001) Anal Chem 73:2529–2535

    Article  CAS  Google Scholar 

  13. Lin MS, Shih WC (1999) Anal Chim Acta 381:183–189

    Article  CAS  Google Scholar 

  14. De Mattos IL, Gorton L, Laurel T, Malinauskas A, Karyakin AA (2000) Talanta 52:791–799

    Article  Google Scholar 

  15. Ricci F, Palleschi G (2005) Biosens Bioelectron 21:389–407

    Article  CAS  Google Scholar 

  16. Siperko LM, Kuwana T (1983) J Electrochem Soc 130:396–402

    Article  CAS  Google Scholar 

  17. Garjonytė R, Malinauskas A (1999) Sens Actuators B Chem 56:93–97

    Article  Google Scholar 

  18. Garjonytė R, Malinauskas A (1998) Sens Actuators B Chem 46:236–241

    Article  Google Scholar 

  19. Fiorito PA, Brett CMA, Córdoba de Torresi SI (2006) Talanta 69:403–408

    Article  CAS  Google Scholar 

  20. Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, Córdoba de Torresi SI (2007) Langmuir 23:6796–6800

    Article  CAS  Google Scholar 

  21. Baioni AP, Vidotti M, Fiorito PA, Córdoba de Torresi SI (2008) J Electroanal Chem 622:219–224

    Article  CAS  Google Scholar 

  22. Guadagnini L, Tonelli D, Giorgetti M (2010) Electrochim Acta 55:5036–5039

    Article  CAS  Google Scholar 

  23. Kulesza PJ, Malik MA, Schmidt R, Smolinska A, Miecznikowski K, Zamponi S, Czerwinski A, Berrettoni M, Marassi R (2000) J Electroanal Chem 487:57–65

    Article  CAS  Google Scholar 

  24. Guadagnini L, Giorgetti M, Tarterini F, Tonelli D (2010) Electroanalysis 22:1695–1701

    Article  CAS  Google Scholar 

  25. Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654

    Article  CAS  Google Scholar 

  26. Sayers DE, Stern EA, Lytle F (1971) Phys Rev Lett 27:1204–1207

    Article  CAS  Google Scholar 

  27. Giorgetti M, Passerini S, Smyrl WH, Berrettoni M (2000) Inorg Chem 39:1514–1517

    Article  CAS  Google Scholar 

  28. Filipponi A (2001) J Phys Condens Matter 13:R23–R60

    Article  CAS  Google Scholar 

  29. Solomon EI, Hedman B, Hodgson KO, Dey A, Szilagyi RK (2005) Coord Chem Rev 249:97–129

    Article  CAS  Google Scholar 

  30. Aquilanti G, Giorgetti M, Minicucci M, Papini G, Pellei M, Tegoni M, Trasatti A, Santini C (2011) Dalton Trans 40:2764–2777

    Article  CAS  Google Scholar 

  31. Giorgetti M, Guadagnini L, Tonelli D, Minicucci M, Aquilanti G (2012) Phys Chem Chem Phys 14:5527–5537

    Article  CAS  Google Scholar 

  32. D'Angelo P, Benfatto M, Della Longa S, Pavel NV (2002) Phys Rev B Condens Matter Mater Phys 66:0642091–0642097

    Google Scholar 

  33. Giorgetti M, Mukerjee S, Passerini S, McBreen J, Smyrl WH (2001) J Electrochem Soc 148:A768–A774

    Article  CAS  Google Scholar 

  34. Giorgetti M, Passerini S, Smyrl WH, Mukerjee S, Yang XQ, McBreen J (1999) J Electrochem Soc 146:2387–2392

    Article  CAS  Google Scholar 

  35. Guadagnini L, Maljusch A, Chen X, Neugebauer S, Tonelli D, Schuhmann W (2009) Electrochim Acta 54:3753–3758

    Article  CAS  Google Scholar 

  36. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Biotechnol Adv 27:489–501

    Article  CAS  Google Scholar 

  37. Di Cicco A, Aquilanti G, Minicucci M, Principi E, Novello N, Cognigni A, Olivi L (2009) J Phys Conf Ser 190:012043

    Article  Google Scholar 

  38. Filipponi A, Di Cicco A, Natoli CR (1995) Phys Rev B: Condens Matter 52:15122–15134

    Article  CAS  Google Scholar 

  39. Filipponi A, Di Cicco A (1995) Phys Rev B: Condens Matter 52:15135–15149

    Article  CAS  Google Scholar 

  40. Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R (1997) Chem Phys Lett 275:108–112

    Article  CAS  Google Scholar 

  41. Giorgetti M, Berrettoni M (2008) Inorg Chem 47:6001–6008

    Article  CAS  Google Scholar 

  42. Hedin L, Lundqvist BI (1971) J Phys C Solid State Phys 4:2064–2083

    Article  Google Scholar 

  43. Krause MO, Oliver JH, Phys J (1979) Chem Ref Data 8:329–338

    Article  CAS  Google Scholar 

  44. Colombari M, Ballarin B, Carpani I, Guadagnini L, Mignani A, Scavetta E, Tonelli D (2007) Electroanalysis 19:2321–2327

    Article  CAS  Google Scholar 

  45. Karyakin AA, Kotel’nikova EA, Lukachova LV, Karyakina EE, Wang J (2002) Anal Chem 74:1597–1603

    Article  CAS  Google Scholar 

  46. Filipponi A (1995) J Phys Condens Matter 7:9343–9356

    Article  CAS  Google Scholar 

  47. Avila M, Reguera L, Rodriguez-Hernandez J, Balmaseda J, Reguera E (2008) J Solid State Chem 181:2899–2907

    Article  CAS  Google Scholar 

  48. Mignani A, Scavetta E, Guadagnini L, Tonelli D (2009) Sens Actuators B Chem 136:196–202

    Article  CAS  Google Scholar 

  49. Karyakin AA, Karyakina EE (1999) Sens Actuators B Chem 57:268–273

    Article  CAS  Google Scholar 

  50. Mizuno C, Bao S, Hinoue T, Nomura T (2005) Anal Sci 21:281–286

    Article  CAS  Google Scholar 

  51. Pinto EM, Soares DM, Brett CMA (2008) Electrochim Acta 53:7460–7466

    Article  CAS  Google Scholar 

  52. Cai Y, Xie Q, Zhou A, Zhang Y, Yao S (2001) J Biochem Biophys Methods 47:209–219

    Article  CAS  Google Scholar 

  53. Barsan MM, Klinčar J, Batič M, Brett CMA (2007) Talanta 71:1893–1900

    Article  CAS  Google Scholar 

  54. Gonçales VR, Matsubara EY, Rosolen JM, Córdoba de Torresi SI (2011) Carbon 49:3039–3047

    Article  Google Scholar 

  55. Haghighi B, Nazari L, Sajjadi SM (2012) Electroanalysis 24:2165–2175

    Article  CAS  Google Scholar 

  56. Zheng H, Xue H, Zhang Y, Shen Z (2002) Biosens Bioelectron 17:541–545

    Article  CAS  Google Scholar 

  57. Suman S, Singhal R, Sharma AL, Malhotra BD, Pundir CS (2005) Sens Actuators B Chem 107:768–772

    Article  CAS  Google Scholar 

Download references

Acknowledgments

XAS measurements at ELETTRA were supported by Sincrotrone Trieste S.C.p.A. (proposal no. 20095163). MG also thanks the University of Bologna for providing RFO funding. The Authors would like to acknowledge Giulia Pavarelli and Francesco Livi for performing some measurements in the laboratory of Analytical Chemistry during their thesis works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorella Guadagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guadagnini, L., Giorgetti, M. & Tonelli, D. Pure copper vs. mixed copper and palladium hexacyanoferrates for glucose biosensing applications. J Solid State Electrochem 17, 2805–2814 (2013). https://doi.org/10.1007/s10008-013-2193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2193-1

Keywords

Navigation