Skip to main content
Log in

The electrochemical activities of anthraquinone monosulfonate adsorbed on the basal plane of reduced graphene oxide by π–π stacking interaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of anthraquinone monosulfonate (AQS) adsorbed on the basal plane of chemically-reduced graphene oxide (RGO) by π–π stacking interaction were investigated. The AQS/RGO nanocomposites were synthesized via a simple reduction–adsorption method and characterized with various techniques, and the surface concentration of AQS on the basal plane of RGO was estimated to be 1.72 × 10−12 mol cm−2. Electrochemical tests showed that the AQS/RGO nanocomposites accelerated the heterogeneous electron transfer, when ferro/ferricyanide was used as a redox probe, and RGO facilitated the electron transfer between AQS and the surface of glassy carbon electrode, producing a well-defined redox couple centered at −0.490 V versus SCE at neutral medium. Compared with AQS and RGO modified glassy carbon (GC) electrode, the AQS/RGO nanocomposites showed better electrocatalytic activity towards oxygen reduction reaction. Rotating disk electrode data showed that the reduction of O2 on AQS/RGO/GC electrode underwent a two-electron process to H2O2 at low overpotential and shifted to four-electron reduction to H2O at relatively high overpotential. The present work demonstrates that AQS can be an efficient catalyst when noncovalently functionalized on the basal plane of RGO for electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarapuu A, Helstein K, Vaik K, Schiffrin DJ, Tammeveski K (2010) Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes. Electrochim Acta 55:6376–6382

    Article  CAS  Google Scholar 

  2. Lobyntseva E, Kallio T, Alexeyeva N, Tammeveski K, Kontturi K (2007) Electrochemical synthesis of hydrogen peroxide: rotating disk electrode and fuel cell studies. Electrochim Acta 52:7262–7269

    Article  CAS  Google Scholar 

  3. Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ (2001) Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J Electroanal Chem 515:101–112

    Article  CAS  Google Scholar 

  4. Baranton S, Bélanger D (2008) In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface. Electrochim Acta 53:6961–6967

    Article  CAS  Google Scholar 

  5. Kalinathan K, DesRoches DP, Liu X, Pickup PG (2008) Anthraquinone-modified carbon fabric supercapacitors with improved energy and power densities. J Power Sources 181:182–185

    Article  CAS  Google Scholar 

  6. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 541:23–29

    Article  CAS  Google Scholar 

  7. Jurmann G, Schiffrin D, Tammeveski K (2007) The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochim Acta 53:390–399

    Article  Google Scholar 

  8. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  9. Zhang G, Yang W, Yang F (2007) Electrochemical behavior and electrocatalytic activity of anthraquinone disulfonate in solution phase and as doping species at polypyrrole-modified glassy carbon electrode. J Electroanal Chem 602:163–171

    Article  CAS  Google Scholar 

  10. McDermott MT, Kneten K, McCreery RL (1992) Anthraquinone disulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects. J Phys Chem 96:3124–3130

    Article  CAS  Google Scholar 

  11. Neumann CC, Batchelor-McAuley C, Downing C, Compton RG (2011) Anthraquinone monosulfonate adsorbed on graphite shows two very different rates of electron transfer: surface heterogeneity due to basal and edge plane sites. Chem --Eur J 17:7320–7326

    Article  CAS  Google Scholar 

  12. Heller I, Kong J, Heering HA, Williams KA, Lemay SG, Dekker C (2005) Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett 5:137–142

    Article  CAS  Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  14. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  15. Wei D, Grande L, Chundi V, White R, Bower C, Andrew P, Ryhanen T (2012) Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem Commun 48:1239–1241

    Article  CAS  Google Scholar 

  16. Arvand M, Ghodsi N (2012) A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17:775–784

    Article  Google Scholar 

  17. Choi J-Y, Higgins D, Chen Z (2012) Highly durable graphene nanosheet supported iron catalyst for oxygen reduction reaction in PEM fuel cells. J Electrochem Soc 159:B87

    Article  CAS  Google Scholar 

  18. Lai L, Chen L, Zhan D, Sun L, Liu J, Lim SH, Poh CK, Shen Z, Lin J (2011) One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 49:3250–3257

    Article  CAS  Google Scholar 

  19. Li W, Tan C, Lowe MA, Abruna HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS nano 5:2264–2270

    Article  CAS  Google Scholar 

  20. Valota AT, Kinloch IA, Novoselov KS, Casiraghi C, Eckmann A, Hill E, Dryfe RAW (2011) Electrochemical behavior of monolayer and bilayer graphene. ACS nano 5:8809–8815

    Article  CAS  Google Scholar 

  21. Zhou Y, Zhang G, Chen J, Yuan Ge XL, Liu L, Yang F (2012) A facile two-step electroreductive synthesis of anthraquinone/graphene nanocomposites as efficient electrocatalyst for O2 reduction in neutral medium. Electrochem Commun 22:69–72

    Article  CAS  Google Scholar 

  22. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and noncovalent approaches, derivatives, and applications. Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  24. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and poly-cations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  25. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  26. Navas Diaz A (1990) Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review. J Photochem Photobiol A 53:141–167

    Article  CAS  Google Scholar 

  27. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  CAS  Google Scholar 

  28. Cançado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 93:247401–247404

    Article  Google Scholar 

  29. Waltman RJ, Pacansky J, Bates CW (1993) X-ray photoelectron spectroscopic studies on organic photoconductors: evaluation of atomic charges on chlorodiane blue and p-(diethylamino)benzaldehyde diphenylhydrazone. Chem Mater 5:1799–1804

    Article  CAS  Google Scholar 

  30. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  CAS  Google Scholar 

  31. Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem --Eur J 17:10763–10770

    Article  CAS  Google Scholar 

  32. Ji X, Banks CE, Crossley A, Compton RG (2006) Oxygenated edge plane sites slow the electron transfer of the ferro/ferricyanide redox couple at graphite electrodes. Chemphyschem 7:1337–1344

    Article  CAS  Google Scholar 

  33. Lu W, Li N, Chen W, Yao Y (2009) The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon 47:3337–3345

    Article  CAS  Google Scholar 

  34. Zhang X, Feng Y, Tang S, Feng W (2010) Preparation of a graphene oxide–phthalocyanine hybrid through strong π–π interactions. Carbon 48:211–216

    Article  Google Scholar 

  35. Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    Article  CAS  Google Scholar 

  36. Forster RJ, O’Kelly JP (2001) Protonation reactions of anthraquinone-2,7-disulphonic acid in solution and within monolayers. J Electroanal Chem 498:127–135

    Article  CAS  Google Scholar 

  37. Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem Commun 12:1052–1055

    Article  CAS  Google Scholar 

  38. Wu J, Wang Y, Zhang D, Hou B (2011) Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources 196:1141–1144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (nos.21177017 and 21177019), the Fundamental Research Funds for the Central Universities (no. DUT10RC(3)113), and the Post-Doctoral Science Foundation of China (no.2011M500560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, G., Zhang, G., Chen, J. et al. The electrochemical activities of anthraquinone monosulfonate adsorbed on the basal plane of reduced graphene oxide by π–π stacking interaction. J Solid State Electrochem 17, 2711–2719 (2013). https://doi.org/10.1007/s10008-013-2145-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2145-9

Keywords

Navigation