Skip to main content
Log in

Electrochemical study of the corrosion inhibition ability of “smart” coatings applied on AA2024

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Smart epoxy coatings modified with different additives were applied on AA2024. The following three different systems were studied: a reference consisting of an epoxy coating containing chromate active pigments and two “smart” coatings modified with containers loaded with corrosion inhibitor—layered double hydroxides filled with mercaptobenzothiazole and tubular halloysites (HS) filled with 8-hydroxyquinoline. The thickness of the coatings was determined by scanning electron microscopy. The barrier properties and the average corrosion resistance were assessed by electrochemical impedance spectroscopy (EIS). The long-term corrosion repair ability of the various coatings was confirmed by EIS measurements carried for a period of 3 weeks in scratched samples. The ability of the smart additives to inhibit corrosion over defects with different sizes and geometry was studied at the microscale by using localized impedance spectroscopy (LEIS) and the scanning vibrating electrode technique. The results demonstrate that the additives provide effective corrosion inhibition on defects of various sizes. Moreover, the LEIS measurements give some important highlights concerning the mechanisms and kinetics of inhibition of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Twite RL, Bierwagen GP (1998) Prog Org Coat 33(2):91–100

    Article  CAS  Google Scholar 

  2. Metroke TL, Parkhill RL, Knobbe ET (2001) Prog Org Coat 41(4):233–238

    Article  CAS  Google Scholar 

  3. Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS (2005) Electrochim Acta 51(2):208–217

    Article  CAS  Google Scholar 

  4. Zheludkevich ML, Shchukin DG, Yasakau KA, Möhwald H, Ferreira MGS (2007) Chem Mater 19(3):402–411

    Article  CAS  Google Scholar 

  5. Zhao J, Frankel G, McCreery RL (1998) J Electrochem Soc 145(7):2258–2264

    Article  CAS  Google Scholar 

  6. Sinko J (2001) Prog Org Coat 42(3–4):267–282

    Article  CAS  Google Scholar 

  7. Costa M, Klein CB (2006) Crit Rev Toxicol 36(2):155–163

    Article  CAS  Google Scholar 

  8. Grundmeier G, Schmidt W, Stratmann M (2000) Electrochim Acta 45(15–16):2515–2533

    Article  CAS  Google Scholar 

  9. Shchukin DG, Möhwald H (2007) Small 3(6):926–943

    Article  CAS  Google Scholar 

  10. Bierwagen G, Brown R, Battocchi D, Hayes S (2010) Prog Org Coat 68(1–2):48–61

    Article  CAS  Google Scholar 

  11. García SJ, Fischer HR, van der Zwaag S (2011) Prog Org Coat 72(3):211–221

    Article  Google Scholar 

  12. Fedrizzi L, Furbeth W, Montemor F (2011) Self healing properties of new serface treatments, vol 58. Maney, UK

    Google Scholar 

  13. Lamaka SV, Zheludkevich ML, Yasakau KA, Montemor MF, Cecílio P, Ferreira MGS (2006) Electrochem Commun 8(3):421–428

    Article  CAS  Google Scholar 

  14. Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS (2007) Prog Org Coat 58(2–3):127–135

    Article  CAS  Google Scholar 

  15. Snihirova D, Lamaka SV, Taryba M, Salak AN, Kallip S, Zheludkevich ML, Ferreira MGS, Montemor MF (2010) ACS Appl Mater Interfaces 2(11):3011–3022

    Article  CAS  Google Scholar 

  16. Snihirova D, Lamaka SV, Montemor MF (2012) Electrochim Acta 83:439–447

    Article  CAS  Google Scholar 

  17. Fix D, Andreeva DV, Lvov YM, Shchukin DG, Möhwald H (2009) Adv Funct Mater 19(11):1720–1727

    Article  CAS  Google Scholar 

  18. Montemor MF, Snihirova DV, Taryba MG, Lamaka SV, Kartsonakis IA, Balaskas AC, Kordas GC, Tedim J, Kuznetsova A, Zheludkevich ML, Ferreira MGS (2012) Electrochim Acta 60:31–40

    Article  CAS  Google Scholar 

  19. Lamaka SV, Zheludkevich ML, Yasakau KA, Montemor MF, Ferreira MGS (2007) Electrochim Acta 52(25):7231–7247

    Article  CAS  Google Scholar 

  20. Salak AN, Tedim J, Kuznetsova AI, Zheludkevich ML, Ferreira MGS (2010) Chem Phys Lett 495(1–3):73–76

    Article  CAS  Google Scholar 

  21. Tedim J, Kuznetsova A, Salak AN, Montemor F, Snihirova D, Pilz M, Zheludkevich ML, Ferreira MGS (2012) Corros Sci 55:1–4

    Article  CAS  Google Scholar 

  22. Jorcin J-B, Krawiec H, Pébère N, Vignal V (2009) Electrochim Acta 54(24):5775–5781

    Article  CAS  Google Scholar 

  23. Lillard RS, Moran PJ, Isaacs HS (1992) J Electrochem Soc 139(4):1007–1012

    Article  CAS  Google Scholar 

  24. Wittmann MW, Leggat RB, Taylor SR (1999) J Electrochem Soc 146(11):4071–4075

    Article  CAS  Google Scholar 

  25. Philippe LVS, Walter GW, Lyon SB (2003) J Electrochem Soc 150(4):B111–B119

    Article  CAS  Google Scholar 

  26. Jorcin J-B, Aragon E, Merlatti C, Pébère N (2006) Corros Sci 48(7):1779–1790

    Article  CAS  Google Scholar 

  27. Ramsey JD, McCreery RL (1999) J Electrochem Soc 146(11):4076–4081

    Article  CAS  Google Scholar 

  28. Isaacs HS, Aldykiewicz AJ, Thierry D, Simpson TC (1996) CORROSION 52(3):163–168

    Article  CAS  Google Scholar 

  29. Trabelsi W, Cecilio P, Ferreira MGS, Montemor MF (2005) Prog Org Coat 54(4):276–284

    Article  CAS  Google Scholar 

  30. Lamaka SV, Shchukin DG, Andreeva DV, Zheludkevich ML, Möhwald H, Ferreira MGS (2008) Adv Funct Mater 18(20):3137–3147

    Article  CAS  Google Scholar 

  31. Thebault F, Vuillemin B, Oltra R, Allely C, Ogle K, Tada E (2008) ECS Trans 11(22):91–105

    Article  CAS  Google Scholar 

  32. Bastos AC, Taryba MG, Karavai OV, Zheludkevich ML, Lamaka SV, Ferreira MGS (2010) Electrochem Commun 12(3):394–397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the MUST (NMP3-LA-2008-214261) project, funded by the FP7 program and all the partners that provided contributions to this work: production of coatings and coated panels Mankiewicz and EADS, with a special mention to Diana Becker, Sonja Nixon, and T. Hack and his co-workers for their support, suggestions, and motivating discussions during the preparation of this work; production of inhibitor filled LDH particles, Dr. Zheludkevich and Dr. João Tedim and co-workers from the University of Aveiro; and production of HS particles, Prof. Shchukin and co-workers from the Max Planck Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darya Snihirova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snihirova, D., Liphardt, L., Grundmeier, G. et al. Electrochemical study of the corrosion inhibition ability of “smart” coatings applied on AA2024. J Solid State Electrochem 17, 2183–2192 (2013). https://doi.org/10.1007/s10008-013-2078-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2078-3

Keywords

Navigation