Skip to main content
Log in

Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li–O2 batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

NiO/multiwalled carbon nanotube (NiO/MWCNT) nanocomposites have been prepared and used for a Li–O2 battery cathode catalyst. Electrochemical measurements demonstrate that the batteries with NiO/MWCNT catalyst have a discharge capacity of 2,500 mAh g−1, a charge capacity of 2,100 mAh g−1, and a rechargeable ability performing better than Ketjenblack (KB) and MWCNTs. KB has the largest discharge capacity (2,700 mAh g−1) due to the highest surface area and pore volume but the worst charging behavior due to poor mass transport in the small-width pore (2.48 nm). MWCNTs have a much better charging performance owing to a larger pore width (8.93 nm) than carbon black. NiO/MWCNTs have the largest charge capacity because of the facilitated mass transport in the comparatively large pores (7.68 nm) and the increased catalytic ability produced by the NiO nanoparticles. These improvements are also responsible for the best cycle and rate performances of the nanocomposites among the three catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  2. Bruce PG (2008) Solid State Ion 179:752–760

    Article  CAS  Google Scholar 

  3. Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524

    Article  CAS  Google Scholar 

  4. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  5. Park M, Sun H, Lee H, Lee J, Cho J (2012) Adv Energy Mater 7:780–800

    Article  Google Scholar 

  6. Xiao J, Xu W, Wang D, Zhang J-G (2010) J Electrochem Soc 157:A487–A492

    Article  CAS  Google Scholar 

  7. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) J Power Sources 146:766–769

    Article  CAS  Google Scholar 

  8. Beattie SD, Manolescu DM, Blair SL (2009) J Electrochem Soc 156:A44–A47

    Article  CAS  Google Scholar 

  9. Xiao J, Xu W, Wang D, Zhang J-G (2010) J Electrochem Soc 157:A294–A297

    Article  CAS  Google Scholar 

  10. Li J, Wang N, Zhao Y, Ding Y, Guan L (2011) Electrochem Commun 13:698–700

    Article  CAS  Google Scholar 

  11. Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) J Am Chem Soc 133:19048–19051

    Article  CAS  Google Scholar 

  12. Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132:12170–12171

    Article  CAS  Google Scholar 

  13. Débart A, Bao J, Armstrong G, Bruce PG (2007) J Power Sources 174:1177–1182

    Article  Google Scholar 

  14. Cui Y, Wen Z, Liu Y (2011) Energy Environ Sci 4:4727–4734

    Article  CAS  Google Scholar 

  15. Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J-G, Wang Y, Liu J (2012) Adv Funct Mater. doi:10.1002/adfm.201200688

  16. Xu W, Xu K, Viswanathana VV, Townea SA, Hardy JS, Xiao J, Niea Z, Hu D, Wang D, Zhang J-G (2011) J Power Sources 196:9631–9639

    Article  CAS  Google Scholar 

  17. Xu W, Xiao J, Wang D, Zhang J, Zhang J-G (2010) J Electrochem Soc 157:A219–A224

    Article  CAS  Google Scholar 

  18. Xu W, Xiao J, Wang D, Zhang J, Zhang J-G (2009) J Electrochem Soc 156:A773–A779

    Article  CAS  Google Scholar 

  19. Wang H, Yang Y, Liang Y, Zheng G, Li Y, Cui Y, Dai H (2012) Energy Environ Sci 5:7931–7935

    Article  CAS  Google Scholar 

  20. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (NSFC) (nos. 20903031 and 21203044) and the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (grant nos. QA201026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kening Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G., Zhang, L., Pan, T. et al. Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li–O2 batteries. J Solid State Electrochem 17, 1759–1764 (2013). https://doi.org/10.1007/s10008-013-2045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2045-z

Keywords

Navigation