Skip to main content
Log in

Supercapacitive behaviors of the nitrogen-enriched activated mesocarbon microbead in aqueous electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The activated nitrogen-enriched novel carbons (a-NENCs) have been prepared by direct carbonization of polyaniline/activated mesocarbon microbead composites and further activated by 16 M HNO3. The electrochemical performances and supercapacitive behaviors of the a-NENCs in 6 M KOH, 1 M H2SO4, and 0.5 M K2SO4 solutions are evaluated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy, cyclic life, leakage current, and self-discharge measurements. The results demonstrate that the supercapacitors perform definitely supercapacitive behaviors; especially in 6 M KOH electrolyte, the supercapacitor represents much better electrochemical performance with more excellent reversibility, shorter relaxation time of 1.11 s, and nearly ideal polarizability. The maximum specific capacitance of the supercapacitors using a-NENCs as active electrode material is 85.1 F g−1 at a rate of 500 mA g−1 in 6 M KOH. These outcomes indicate that the 6 M KOH aqueous solution is a promising electrolyte for the supercapacitor with a-NENCs as electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li LX, Tang XC, Luo Z, Song XW, Liu HT (2010) Int J Hydrogen Energ 35:2847–2851

    Article  CAS  Google Scholar 

  2. Zhao X, Ma L (2009) Int J Hydrogen Energ 34:4788–4796

    Article  CAS  Google Scholar 

  3. Wahdame B, Candusso D, Francois X, Harel F, Kauffmann JM, Coquery G (2009) Int J Hydrogen Energ 34:967–980

    Article  CAS  Google Scholar 

  4. Zhao YF, Wang W, Xiong DB, Shao GJ, Xia W, Yu SX, Gao FM (2011) Int J Hydrogen Energ 37:19395–19400

    Article  Google Scholar 

  5. Nishino A (1996) J Power Sourc 60:137–147

    Article  CAS  Google Scholar 

  6. Arbizzani C, Mastragostino M, Meneghello L (1996) Electrochim Acta 41:21–26

    Article  CAS  Google Scholar 

  7. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  8. Kim W, Joo JB, Kim N, Oh S, Kim P, Yi J (2009) Carbon 47:1407–1411

    Article  CAS  Google Scholar 

  9. Pandolfo AG, Hollenkamp AF (2006) J Power Sourc 157:11–27

    Article  CAS  Google Scholar 

  10. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Chem Mater 17:1241–1247

    Article  CAS  Google Scholar 

  11. Kima ND, Kima WY, Joo JB, Oh S, Kimb P, Kim YH, Yi JH (2008) J Power Sourc 180:671–675

    Article  Google Scholar 

  12. Vagner C, Finqueneisel G, Zimmy T, Burg P, Grzyb B, Machnikowski J, Weber JV (2003) Carbon 41:2847–2853

    Article  CAS  Google Scholar 

  13. Pietrzak R, Jurewicz K, Nowicki P, Babeł K, Wachowska H (2007) Fuel 86:1086–1092

    Article  CAS  Google Scholar 

  14. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) Carbon 47:2984–2992

    Article  CAS  Google Scholar 

  15. Jurewicz K, Pietrzak R, Nowicki HH, Wachowska H (2008) Electrochim Acta 53:5469–5475

    Article  CAS  Google Scholar 

  16. Zhu Y, Li J, Wan M, Jiang L (2009) Eur J Inorg Chem 2009:2860–2864

    Article  Google Scholar 

  17. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suarez-Garcia F, Tascon JM, Lu GQ (2009) J Am Chem Soc 131:5026–5027

    Article  CAS  Google Scholar 

  18. Yuan D, Zhou T, Zhou S, Zou W, Mo S, Xia N (2011) Electrochem Commun 13:242–246

    Article  CAS  Google Scholar 

  19. Dong YR, Nishiyama N, Kodama M, Egashira Y, Ueyama K (2009) Carbon 47:2138–2141

    Article  CAS  Google Scholar 

  20. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Electrochem Commun 10:1652–1655

    Article  CAS  Google Scholar 

  21. Wu C, Wang XY, Ju BW, Zhang XY, Jiang LL, Wu H (2012) Int J Hydrogen Energ 37:14365–14372

    Article  CAS  Google Scholar 

  22. Lu XF, Mao H, Zhang WJ (2009) Polym Compos 30:847–854

    Article  CAS  Google Scholar 

  23. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  24. Xiang XX, Liu EH, Li LM, Yang YJ, Shen HJ, Huang ZZ, Tian YY (2011) J Solid State Electrochem 15:579–585

    Article  CAS  Google Scholar 

  25. Hu CC, Wang CC (2002) Electrochem Commun 4:554–559

    Article  CAS  Google Scholar 

  26. Tansel B, Sager J, Rector T, Garland J, Richard F, Levine SL, Roberts M, Hummerick M, Bauer J (2006) Sep Purif Technol 51:40–47

    Article  CAS  Google Scholar 

  27. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  28. Berry RS, Rice SA, Ross J (1980) In Physical Chemistry 30:1157–1164

    Google Scholar 

  29. Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, Shen L, Zhang X (2011) Electrochim Acta 56:5115–5121

    Article  CAS  Google Scholar 

  30. Teng H, Chang YJ, Hsieh CT (2001) Carbon 39:1981–1987

    Article  CAS  Google Scholar 

  31. Wang YG, Li HQ, Xia YY (2006) Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  32. De Levie R (1964) Electrochim Acta 9:1231–1245

    Article  Google Scholar 

  33. Qu DY (2002) J Power Sourc 109:403–411

    Article  CAS  Google Scholar 

  34. Eskusson J, Jänes A, Kikas A, Matisen L, Lust E (2011) J Power Sourc 196:4109–4116

    Article  CAS  Google Scholar 

  35. Wang D, Ni W, Pang H, Lu Q, Huang Z, Zhao J (2010) Electrochim Acta 55:6830–6835

    Article  CAS  Google Scholar 

  36. Denisa H, Masaya K, Hiroaki H (2006) Chem Mater 18:2318–2326

    Article  Google Scholar 

  37. Kurig H, Jänes A, Lust E (2010) J Electrochem Soc 157:A272–A279

    Article  CAS  Google Scholar 

  38. Masarapu C, Zeng HF, Hung KH, Wei B (2009) ACS Nano 3:2199–2206

    Article  CAS  Google Scholar 

  39. Zhou SY, Li XH, Wang ZX, Guo HJ, Peng WJ (2007) Trans Nonferrous Met Soc China 17:1328–1333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant nos. 51072173, 51272221, and 21203161), Specialized Research Fund for the Doctoral Program of Higher Education (grant no. 20094301110005), and Project supported by the Xiangtan University (grant no. 2011XZX10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Wang, X., Ju, B. et al. Supercapacitive behaviors of the nitrogen-enriched activated mesocarbon microbead in aqueous electrolytes. J Solid State Electrochem 17, 1693–1700 (2013). https://doi.org/10.1007/s10008-013-2038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2038-y

Keywords

Navigation