Skip to main content
Log in

The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical determination of Hg(II) in aquatic solutions on bare and modified glassy carbon electrode (GCE) is reported. Optimizing the parameters used for a bare GCE, such as the electrolyte solution, the potential and time of deposition, resulted in linear response over a large range of Hg(II) concentrations (4–160 ppb) using linear sweep anodic stripping voltammetry. Modification of the electrode with 4,4′-disulfanediyldibenzenediazonium (DSBD) yielded a lowest detection limit of 1 ppb. Two procedures for DSBD synthesis are described for the first time, and the product was characterized by microanalysis, FTIR and 1H-NMR. The electrochemical attachment of DSBD to the electrode was studied and compared with the electrochemical behaviour of DSBD analogous molecules, i.e. 4-aminophenyl disulfide, p-aminothiophenol and phenyl disulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Leopold K, Foulkes M, Worsfold P (2010) Anal Chim Acta 663:127–138

    Article  CAS  Google Scholar 

  2. Alves GMS, Magalhaes JMCS, Salauen P, van den Berg CMG, Soares HMVM (2011) Anal Chim Acta 703:1–7

    Article  CAS  Google Scholar 

  3. Zen JM, Chung MJ (1995) Anal Chem 67:3571–3577

    Article  CAS  Google Scholar 

  4. Kamenev AI, Viter IP (1993) J Anal Chem 48:841–846

    Google Scholar 

  5. Lu HQ, He XW, Zeng XS, Wan QJ, Zhang ZZ (2003) Talanta 59:553–560

    Article  CAS  Google Scholar 

  6. Turyan I, Mandler D (1993) Nature 362:703–704

    Article  CAS  Google Scholar 

  7. Turyan Vva DM (1994) Electroanalysis 6:838–843

    Article  Google Scholar 

  8. Turyan I, Atiya M, Mandler D (2001) Electroanalysis 13:653–659

    Article  CAS  Google Scholar 

  9. Chen ZL, Pourabedi Z, Hibbert DB (1999) Electroanalysis 11:964–968

    Article  CAS  Google Scholar 

  10. Ugo P, Moretto LM, Mazzocchin GA (1995) Anal Chim Acta 305:74–82

    Article  CAS  Google Scholar 

  11. Ugo P, Zampieri S, Moretto LM, Paolucci D (2001) Anal Chim Acta 434:291–300

    Article  CAS  Google Scholar 

  12. Ugo P, Sperni L, Moretto LM (1997) Electroanalysis 9:1153–1158

    Article  CAS  Google Scholar 

  13. Rahman MA, Won M-S, Shim Y-B (2003) Anal Chem 75:1123–1129

    Article  CAS  Google Scholar 

  14. Rahman A, Park DS, Won MS, Park SM, Shim YB (2004) Electroanalysis 16:1366–1370

    Article  CAS  Google Scholar 

  15. Turyan I, Erichsen T, Schuhmann W, Mandler D (2001) Electroanalysis 13:79–82

    Article  CAS  Google Scholar 

  16. Svancara I, Matousek M, Sikora E, Schachl K, Kalcher K, Vytras K (1997) Electroanalysis 9:827–833

    Article  CAS  Google Scholar 

  17. Walcarius A, Devoy J, Bessiere J (2000) J Solid State Electrochem 4:330–336

    Article  CAS  Google Scholar 

  18. Dias Filho NL, Do Carmo DR, Rosa AH (2006) Electrochim Acta 52:965–972

    Article  CAS  Google Scholar 

  19. Aleixo LM, Souza MDB, Godinho OES, Neto GD, Gushikem Y, Moreira JC (1993) Anal Chim Acta 271:143–148

    Article  Google Scholar 

  20. Dias NL, Do Carmo DR, Caetano L, Rosa AH (2005) Anal Sci 21:1359–1363

    Article  Google Scholar 

  21. Yantasee W, Lin YH, Zemanian TS, Fryxell GE (2003) Analyst 128:467–472

    Article  CAS  Google Scholar 

  22. Sayen S, Etienne M, Bessiere J, Walcarius A (2002) Electroanalysis 14:1521–1525

    Article  CAS  Google Scholar 

  23. Filho NLD, Do Carmo DR, Gessner F, Rosa AH (2005) Anal Sci 21:1309–1316

    Article  Google Scholar 

  24. Colilla M, Mendiola MA, Procopio JR, Sevilla MT (2005) Electroanalysis 17:933–940

    Article  CAS  Google Scholar 

  25. Afkhami A, Bagheri H, Khoshsafar H, Saber-Tehrani M, Tabatabaee M, Shirzadmehr A (2012) Anal Chim Acta 746:98–106

    Article  CAS  Google Scholar 

  26. Giacomino A, Abollino O, Malandrino M, Mentasti E (2008) Talanta 75:266–273

    CAS  Google Scholar 

  27. Salauen P, van den Berg CMG (2006) Anal Chem 78:5052–5060

    Article  CAS  Google Scholar 

  28. Widmann A, van den Berg CMG (2005) Electroanalysis 17:825–831

    Article  CAS  Google Scholar 

  29. Scholz F (2010) Electroanalytical methods, 2nd edn. Springer, Berlin, (Pages: 215, 273–274, 286–288)

    Book  Google Scholar 

  30. Stozhko NY, Malakhova NA, Fyodorov MV, Brainina KZ (2008) J Solid State Electrochem 12:1185–1204

    Article  CAS  Google Scholar 

  31. Yi HC (2003) Anal Bioanal Chem 377:770–774

    Article  CAS  Google Scholar 

  32. Huang WS, Zhang SH (2002) Anal Sci 18:187–189

    Article  Google Scholar 

  33. Gooding JJ (2008) Electroanalysis 20:573–582

    Article  CAS  Google Scholar 

  34. Mandler D, Kraus-Ophir S (2011) J Solid State Electrochem 15:1535–1558

    Google Scholar 

  35. Liu G, Bocking T, Gooding JJ (2007) J Electroanal Chem 600:335–344

    Article  CAS  Google Scholar 

  36. Fink L, Mandler D (2010) J Electroanal Chem 649:153–158

    Article  CAS  Google Scholar 

  37. Okcu F, Ertas FN, Gokcel HI, Tural H (2005) Turk J Chem 29:355–366

    CAS  Google Scholar 

  38. Bonfil Y, Brand M, Kirowa-Eisner E (2000) Anal Chim Acta 424:65–76

    Article  CAS  Google Scholar 

  39. Noyhouzer T, Mandler D (2011) Anal Chim Acta 684:1–7

    Article  CAS  Google Scholar 

  40. Downard AJ (2000) Electroanalysis 12:1085–1096

    Article  CAS  Google Scholar 

  41. Harnisch JA, Pris AD, Porter MD (2001) J Am Chem Soc 123:5829–5830

    Article  CAS  Google Scholar 

  42. Brooksby PA, Downard AJ (2004) Langmuir 20:5038–5045

    Article  CAS  Google Scholar 

  43. Nielsen LT, Vase KH, Dong M, Besenbacher F, Pedersen SU, Daasbjerg K (2007) J Am Chem Soc 129:1888–1889

    Google Scholar 

  44. Kermit B, Whetsel G (1956) J Am Chem Soc 78:3360–3363

    Article  Google Scholar 

  45. NIoAISaT Spectral Database for Organic Compounds SDBS. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng. Accessed 15 Nov 2012

  46. Borsari M, Cannio M, Gavioli G (2003) Electroanalysis 15:1192–1197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hydronet Project (http://www.hydronet-project.eu) and partially by the Singapore National Research Foundation under CREATE programme: “Nanomaterials for Energy and Water Management”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahar, T., Tal, N. & Mandler, D. The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II). J Solid State Electrochem 17, 1543–1552 (2013). https://doi.org/10.1007/s10008-013-2009-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2009-3

Keywords

Navigation