Skip to main content
Log in

Numerical values of individual activity coefficients of single-ion species in concentrated aqueous electrolyte solutions and the attempt of a qualitative interpretation on a model of electrostatic interaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Individual activity coefficients of single-ion species can be achieved by the factorizing of a new concentration function for the mean activity coefficient to the required power applying a purely mathematical method. These single-ion activity coefficients, calculated in this manner, are listed for some aqueous strong electrolytes. The reasons for the magnitude and variation of the activity coefficients as a function of the concentration are, without a doubt, of complex nature. Activity coefficients have their meaning as practical values. In relation to the analytical concentration, the individual activity coefficients represent the macroscopic effectiveness of the single-ion species in solution an easy manner. However, with increasing deviations from Debye–Hückel conditions of an infinitely diluted electrolyte solution, a physically correct interpretation of the macroscopically visible activity coefficient is becoming more and more difficult, if not impossible to find. On the basis of a model of electrostatic interaction, an attempt has been made to create a qualitative interpretation of the individual ion activity coefficients in concentrated aqueous electrolyte solutions which were calculated applying the purely mathematical method by Ferse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferse A (1977) Vorschlag zur Berechnung individueller thermodynamischer Aktivitätskoeffizienten einzelner Ionensorten in Elektrolytlösungen bis zu hohen Konzentrationen. Z Phys Chem (Leipzig) 258:257–279

    CAS  Google Scholar 

  2. Ferse A, Neumann P (1977) Mathematische Aspekte zu einer Methode zur numerischen Bestimmung individueller thermodynamischer Aktivitätskoeffizienten einzelner Ionensorten in konzentrierten Elektrolytlösungen. Mathem Operationsforschg und Statistik, Ser Statistics 8:529–543

    Article  Google Scholar 

  3. Ferse A (1981) Über individuelle thermodynamische Aktivitätskoeffizienten einzelner Ionensorten von Erdalkalihalogeniden und Erdalkaliperchloraten sowie Uranylperchlorat in wäßriger Lösung bei 25 °C bis zu hohen Konzentrationen. Z Phys Chem (Leipzig) 262:977–995

    CAS  Google Scholar 

  4. Ferse A (2008) Zur Problematik individueller thermodynamischer Aktivitätskoeffizienten einzelner Ionensorten in Elektrolytlösungen hoher Konzentration. Z Anorg Allg Chem 634:797–815

    Article  CAS  Google Scholar 

  5. Ferse A, Müller H-O (2011) Factorizing of a concentration function for the mean activity coefficients of aqueous strong electrolytes into individual functions for the ionic species. J Solid State Electrochem 15:2149–2167

    Article  CAS  Google Scholar 

  6. Ferse A (2012) Some aspects on the problem of individual activity coefficients of single-ion species of aqueous strong electrolytes. Int J Chem (Toronto) 4:45–61

    CAS  Google Scholar 

  7. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Book  Google Scholar 

  8. Seber GAF, Wild CJ (2003) Nonlinear regression. Wiley, New York

    Google Scholar 

  9. Guggenheim EA (1929) The conceptions of electrical potential difference between two phases and the individual activities of ions. J Phys Chem 33:842–849

    Article  CAS  Google Scholar 

  10. Hamer WJ, Wu Y-C (1972) Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J Phys Chem Ref Data 1:1047–1099

    Article  CAS  Google Scholar 

  11. Staples BR, Nuttall RL (1977) The activity and osmotic coefficients of aqueous calcium chloride at 298.15 K. J Phys Chem Ref Data 6:385–407

    Article  CAS  Google Scholar 

  12. Ferse A (1978) Zur Frage individueller thermodynamischer Aktivitätskoeffizienten einzelner Ionensorten in Elektrolytlösungen hoher Konzentration. Z Chem 18:8–15

    Article  CAS  Google Scholar 

  13. Ebeling W, Scherwinski K (1983) On the estimation of theoretical individual activity coefficients of electrolytes. I. Hard sphere model. Z Phys Chem (Leipzig) 264:1–14

    CAS  Google Scholar 

  14. Kristóf T, Liszi J (1992) Application of the test particle method for the determination of single ion activity coefficients in a real electrolyte solution. Z Phys Chem (München) 178:87–94

    Article  Google Scholar 

  15. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte I. Physik Z (Leipzig) 24:185–206

    CAS  Google Scholar 

  16. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte II. Physik Z (Leipzig) 24:305–325

    CAS  Google Scholar 

  17. Schwabe K (1986) Physikalische Chemie vol. II, Elektrochemie, 3rd edn. Akademie, Berlin, p 83

    Google Scholar 

  18. Glueckauf E (1964) Bulk dielectric constant of aqueous electrolytes solutions. Trans Faraday Soc 60:1637–1645

    Article  CAS  Google Scholar 

  19. Bockris JO’M, Saluja PPS (1972) Approximate calculations of the heats and entropies of hydration according to various models. J Phys Chem 76:2298–2310

    Article  CAS  Google Scholar 

  20. Samoilow OJ (1961) Die Struktur wässriger Elektrolytlösungen und die Hydratation von Ionen. G. Teubner, Leipzig (pp. 83–90); the same work was also published in English (1965) Structure of Aqueous Electrolyte Solutions and the Hydration of Ions. Consultants Bureau Enterprises Inc, New York

  21. Lide DR (ed) (2006/2007) Handbook of chemistry and physics, 87th ed. CRC: Boca Raton

  22. Wicke E, Eigen M, Ackermann T (1954) Über den Zustand des Protons (Hydroniumions) in wässriger Lösung. Z Phys Chem [NF] (Frankfurt) 1:340–364

    Article  Google Scholar 

  23. Suhrmann R, Wiedersich I (1953) Dialysis experiments with hydrogen ions in aqueous salt solutions to explain the mechanism of the migration of hydrogen ions. Z Elektrochem 57:93–100

    CAS  Google Scholar 

  24. Wang JH, Robinson CV, Edelmann IS (1953) Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3 and O18 as Tracers1. J Am Chem Soc 75:466–470

    Article  Google Scholar 

  25. Janoschek R, Weidemann EG, Pfeiffer H, Zundel G (1972) Extremely high polarizability of hydrogen bonds. J Am Chem Soc 94:2387–2396

    Article  CAS  Google Scholar 

  26. Roberts NK (1976) Proton diffusion and activity in the presence of electrolytes. J Phys Chem 80:1117–1120

    Article  CAS  Google Scholar 

  27. Haggis GH, Hasted JB, Buchanan TJ (1952) The dielectric properties of water in solutions. J Chem Phys 20:1452–1465

    Article  CAS  Google Scholar 

  28. Malatesta F (2011) Comment on “Factorizing of a concentration function for the mean activity coefficients of aqueous strong electrolytes into individual functions for ionic species” by A. Ferse and H.-O. Müller. J Solid State Electrochem 15:2169–2171

    Article  CAS  Google Scholar 

  29. Ferse A (2011) Reply to the comment by Malatesta on: “Factorizing of a concentration function for the mean activity coefficients of aqueous strong electrolytes into individual functions for ionic species” by A. Ferse and H.-O. Müller. J Solid State Electrochem 15:2173–2175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I want to express my thanks to Dr. Hans-Otfried Müller, Technische Universität Dresden, Institut für Mathematische Stochastik, Germany, for the good cooperation in case of the implementation of computer calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Ferse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferse, A. Numerical values of individual activity coefficients of single-ion species in concentrated aqueous electrolyte solutions and the attempt of a qualitative interpretation on a model of electrostatic interaction. J Solid State Electrochem 17, 1321–1332 (2013). https://doi.org/10.1007/s10008-012-1989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1989-8

Keywords

Navigation