Skip to main content
Log in

Mesoporous MnO2 synthesized by hydrothermal route for electrochemical supercapacitor studies

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 °C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 °C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g−1 is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Google Scholar 

  2. Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) J Power Sources 134:148–152

    Article  CAS  Google Scholar 

  3. Devaraj S, Munichandraiah N (2008) J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  4. Zhang GQ, Zhang ST (2009) J Appl Electrochem 39:1033–1038

    Article  CAS  Google Scholar 

  5. Xue T, Xu CL, Zhao DD, Li XH, Li HL (2007) J Power Sources 164:953–958

    Article  CAS  Google Scholar 

  6. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220–223

    Article  CAS  Google Scholar 

  7. Staiti P, Lufrano F (2009) J Power Sources 187:284–289

    Article  CAS  Google Scholar 

  8. Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4:A19–A22

    Article  CAS  Google Scholar 

  9. Reddy RN, Reddy RG (2003) J Power Sources 124:330–337

    Article  CAS  Google Scholar 

  10. Reddy RN, Reddy RG (2004) J Power Sources 132:315–320

    Article  CAS  Google Scholar 

  11. Devaraj S, Munichandraiah N (2007) J Electrochem Soc 154:A80–A88

    Article  CAS  Google Scholar 

  12. Subramanian V, Zhu H, Wei B (2006) J Power Sources 159:361–364

    Article  CAS  Google Scholar 

  13. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  14. Xu M, Kong L, Zhou W, Li H (2007) J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  15. Tang N, Tian X, Yang C, Pi Z (2009) Mater Res Bull 44:2062–2067

    Article  CAS  Google Scholar 

  16. Xiao W, Xia H, Fu JYH, Lu L (2009) J Power Sources 193:935–938

    Article  CAS  Google Scholar 

  17. Chen R, Javaliz P, Whittingham MS (1996) Chem Mater 8:1275–1280

    Article  CAS  Google Scholar 

  18. Hu CC, Tsou TW (2002) Electrochem Commun 4:105–109

    Article  CAS  Google Scholar 

  19. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444–450

    Article  CAS  Google Scholar 

  20. Devaraj S, Munichandraiah N (2005) Electrochem Solid-State Lett 8:A373–A377

    Article  CAS  Google Scholar 

  21. Hu CC, Wang CC (2003) J Electrochem Soc 150:A1079–A1084

    Article  CAS  Google Scholar 

  22. Du G, Wang J, Guo Z, Chen Z, Liu H (2011) Mater Lett 65:1319–1322

    Article  CAS  Google Scholar 

  23. Muth O, Schellbach C, Froba M (2001) Chem Commun 2032–2033

  24. Hayashi H, Hakuta Y (2010) Materials 3:3794–3817

    Article  CAS  Google Scholar 

  25. Jiang R, Huang T, Liu J, Zhuang J, Yu A (2009) Electrochim Acta 54:3047–3052

    Article  CAS  Google Scholar 

  26. Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419–A1422

    Article  CAS  Google Scholar 

  27. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N (2009) J Phys Chem C 113:6303–6309

    Article  CAS  Google Scholar 

  28. Subramanian V, Zhu H, Wei B (2008) Chem Phys Lett 453:242–249

    Article  CAS  Google Scholar 

  29. Nayak PK, Munichandraiah N (2011) Microporous Mesoporous Mater 143:206–214

    Article  CAS  Google Scholar 

  30. Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  31. Xu C, Du H, Li B, Kang F, Zeng Y (2009) J Electrochem Soc 156:A73–A78

    Article  CAS  Google Scholar 

  32. Xu C, Du H, Li B, Kang F, Zeng Y (2009) J Electrochem Soc 156:A435–A441

    Article  CAS  Google Scholar 

  33. Nayak PK, Munichandraiah N (2011) J Electrochem Soc 158:A585–A591

    Article  CAS  Google Scholar 

  34. Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Nano Lett 10:4099–4104

    Article  CAS  Google Scholar 

  35. Hasan M, Jamal M, Razeeb KM (2012) Electrochim Acta 60:193–200

    Article  CAS  Google Scholar 

  36. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB (2011) Chem Commun 47:5786–5788

    Article  CAS  Google Scholar 

  37. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Nanoscale 3:5034–5040

    Article  CAS  Google Scholar 

  38. Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) J Mater Chem 20:6720–6725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Munichandraiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, P.K., Munichandraiah, N. Mesoporous MnO2 synthesized by hydrothermal route for electrochemical supercapacitor studies. J Solid State Electrochem 16, 2739–2749 (2012). https://doi.org/10.1007/s10008-012-1693-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1693-8

Keywords

Navigation