Skip to main content
Log in

Effect of styrene–acrylonitrile content on 0.5 M NaI/0.05 M I2 liquid electrolyte encapsulation for dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of a gel polymer electrolyte (GPE) as the redox electrolyte used in dye-sensitized solar cells was studied. A GPE solution consisting of 0.5 M sodium iodide, 0.05 M iodine, and ethylene carbonate/propylene carbonate (1:1 w/w) binary solvents was mixed with increasing amounts of styrene–acrylonitrile (SAN). Bulk conductivity measurements show a decreasing trend from 4.54 to 0.83×10−3 S cm−1 with increasing SAN content. The GPE exhibits Newtonian-like behavior and its viscosity increases from 0.041 to 1.093 Pa s with increasing SAN content. A balance between conductivity (1.3 × 10−3 S cm−1) and viscosity (1.4 Pa s) is observed at 19 wt.% SAN. Fourier transform infrared spectroscopy detects elevated ring torsion at 706 cm−1 upon the addition of SAN into the liquid electrolyte. This indicates that SAN does not bond with the liquid electrolyte. Finally, the potential stability window of 19 wt.% SAN, which ranges from −1.68 to 1.38 V, proves its applicability in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saikia D, Han CC, Chen-Yang YW (2008) J Power Sources 185:570–576

    Article  CAS  Google Scholar 

  2. Ramani R, Ramachandra P, Ramgopal G, Ranganathaiah C (1998) J Appl Polym Sci 68:2077–2085

    Article  CAS  Google Scholar 

  3. Ileperuma OA, Dissanayake MAKL, Somasunderam S, Bandara LRAK (2004) Sol Energy Mater Sol Cells 84:117–124

    Article  CAS  Google Scholar 

  4. Panwar V, Kang B, Park J-O, Park S, Mehra RM (2009) Eur Polym J 45:1777–1784

    Article  CAS  Google Scholar 

  5. Silva ALA, Takase I, Pereira RP, Rocco AM (2008) Eur Polym J 44:1462–1474

    Article  CAS  Google Scholar 

  6. Lan Z, Wu J, Wang D, Hao S, Lin J, Huang Y (2006) Sol. Energy 80:1483–1488

    CAS  Google Scholar 

  7. Dissanayake MAKL, Bandara LRAK, Bokalawala RSP, Jayathilaka PARD, Ileperuma OA, Somasundaram S (2002) Mater Res Bull 37:867–874

    Article  CAS  Google Scholar 

  8. Sekhon SS (2003) Bull Mat Sci 26:321–328

    Article  CAS  Google Scholar 

  9. Deepa M, Sharma N, Agnihotry SA, Singh S, Lal T, Chandra R (2002) Solid State Ionics 152–153:253–258

    Article  Google Scholar 

  10. Yap CK, Tan WC, Alias SS, Mohamad AA (2009) J Alloy Compd 484:934–938

    Article  CAS  Google Scholar 

  11. Tan WC, Mohamad AA (2010) J Electrochem Soc 157:E184–E190

    Article  CAS  Google Scholar 

  12. Chowdhury A, Thynell ST (2007) Thermochim Acta 466:1–12

    Article  CAS  Google Scholar 

  13. Dyson RW (1998) Specialty Polymers 2nd ed. Blackie Academic & Professional, United Kingdom, P9

    Google Scholar 

  14. Grozema FC, Zijlstra RWJ, Swart M, Duijnen PTV (1999) Int J Quantum Chem 75:709–723

    Article  CAS  Google Scholar 

  15. Trchová M, Sedenková I, Tobolková E, Stejskal J (2004) Polym Degrad Stabil 86:179–185

    Article  Google Scholar 

  16. Pajkossy T (2005) Solid State Ionics 176:1997–2003

    Article  CAS  Google Scholar 

  17. Ricciardi S, Ruiz-Morales JC, Nuñez P (2009) Solid State Ionics 180:1083–1090

    Article  CAS  Google Scholar 

  18. Chen W, Tang H, Ou Z, Wang H, Yang Y (2007) Electrochim Acta 53:2065–2070

    Article  CAS  Google Scholar 

  19. Rammelt U, Reinhard G (1990) Electrochim Acta 35:1045–1049

    Article  CAS  Google Scholar 

  20. Haward RN, Young RJ (1997) The physics of glassy polymers. Chapman & Hall, United Kingdom, p 18

    Book  Google Scholar 

  21. Wang Y, Sun Y, Song B, Xi J (2008) Sol Energy Mater Sol Cells 92:660–666

    Article  CAS  Google Scholar 

  22. Yildiran H, Ayata S, Tuncgenc M (2007) Ionics 13:83–86

    Article  CAS  Google Scholar 

  23. Saito Y, Stephan AM, Kataoka H (2003) Solid State Ionics 160:149–153

    Article  CAS  Google Scholar 

  24. Southall JP, Hubbard HVSA, Johnston SF, Rogers V, Davies GR, McIntyre JE, Ward IM (1996) Solid State Ionics 85:51–60

    Article  CAS  Google Scholar 

  25. Carraher CEJ (2008) Polymer Chemistry, 7th edn. Taylor & Francis Group, USA, p 229

    Google Scholar 

  26. Hamley IW (2000) Introduction to soft matter; polymers, colliods, amphiphiles and liquid crystal. Wiley, England, p 76

    Google Scholar 

  27. Svorcík V, Prosková K, Hnatowicz V, Rybka V (1999) Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 149:312–318

    Article  Google Scholar 

  28. Buchholz FL, Graham AT (1998) The structure and properties of superabsorbent polyacrylates. In: Buchholz FL (ed) Modern superabsorbent polymer technology. Wiley, USA, p 199

    Google Scholar 

  29. Taggougui M, Diaw M, Carré B, Willmann P, Lemordant D (2008) Electrochim Acta 53:5496–5502

    Article  CAS  Google Scholar 

  30. Pas SJ, Ingram MD, Funke K, Hill AJ (2005) Electrochim Acta 50:3955–3962

    Article  CAS  Google Scholar 

  31. Yum J-H, Humphry-Baker R, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2010) Nano Today 5:91–98

    Article  CAS  Google Scholar 

  32. Guillén E, Fernández-Lorenzo C, Alcántara R, Martín-Calleja J, Anta JA (2009) Sol Energy Mater Sol Cells 93:1846–1852

    Article  Google Scholar 

  33. Stergiopoulos T, Arabatzis IM, Cachet H, Falaras P (2003) J Photochem Photobiol A-Chem 155:163–170

    Article  CAS  Google Scholar 

  34. Ikezawa Y, Ariga T (2007) Electrochim Acta 52:2710–2715

    Article  CAS  Google Scholar 

  35. Ikezawa Y, Nishi H (2008) Electrochim Acta 53:3663–3669

    Article  CAS  Google Scholar 

  36. Maillo J, Pages P, Vallejo E, Lacorte T, Gacen J (2005) Eur Polym J 41:753–759

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Short Term Grant 6039030, USM-RU-PRGS 8031030, MOSTI for the National Science Fellowship award and the USM Fellowship P-GM 0331 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Azmin Mohamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W.C., Alias, S.S., Ismail, A.B. et al. Effect of styrene–acrylonitrile content on 0.5 M NaI/0.05 M I2 liquid electrolyte encapsulation for dye-sensitized solar cells. J Solid State Electrochem 16, 2103–2112 (2012). https://doi.org/10.1007/s10008-011-1625-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1625-z

Keywords

Navigation