Skip to main content
Log in

Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrode reactions of intermediates formed during capture of OH radicals by dimethylsulfoxide molecules were studied by laser photoemission in aqueous buffer solutions and pH range from acidic to basic. The results were compared with those obtained previously for electrochemical behaviour of methyl radicals generated via photoemission from CH3Cl. The essential similarity was found for parameters of irreversible one-electron transfer from/to these intermediates, i.e. the potentials E 1/2 on time-resolved voltammograms and rate constants at E = E 1/2. Hence, both active particles were concluded to be equivalent and corresponded to methyl radical. The primary product of OH radicals capture by DMSO molecules, i.e. adduct (CH3)2SO·(OH), was spontaneously decomposed to form ·CH3 with time as low as <2 × 10−5 s. A simultaneous increase of the reduction wave height was observed at pH transition from low basic to low acidic and at illumination times T m of an electrode with UV light if T m ≥ 90–300 ms. The increase exceeded considerably the one-electron reduction level. These features were presumably caused by the rather slow formation of organomercury intermediates as interaction products of the components of the system with a mercury electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ludvik J, Pragst F, Volke J (1984) Electrochemical generation of triplet states: simplified estimation of triplet energies by electrogenerated chemiluminescence based on the anodic cleavage of dimeric dihydroheteroarenes. J Electroanal Chem 180(1–2):141

    Article  CAS  Google Scholar 

  2. Ludvik J, Volke J, Pragst F (1986) Investigation of 2 radical intermediates in the anodic-oxidation of 1,4-dihydropyridines by electrochemiluminescence. J Electroanal Chem 215(1–2):179

    Article  CAS  Google Scholar 

  3. Ludvik J (1994) Elektrochemicky generovaná luminescence (in Czech). Chem Listy 88(11):696

    CAS  Google Scholar 

  4. Wayner DDM, Parker VD (1993) Bond-energies in solution from electrode-potentials and thermochemical cycles—a simplified and general-approach. Acc Chem Res 26(5):287

    Article  CAS  Google Scholar 

  5. Grampp G, Muresanu C, Landgraf S (2005) Solvent influence on the electrochemical reduction of photochemically generated cis-azobenzene. J Electroanal Chem 582(1–2):171

    CAS  Google Scholar 

  6. Krivenko AG, Benderskii VA (1990) Electrochemistry of short-lived intermediates. Russ Chem Rev 59(1):1

    Article  Google Scholar 

  7. Benderskii VA, Benderskii AV (1995) Laser electrochemistry of intermediates. CRC, New York

    Google Scholar 

  8. Krivenko AG, Kotkin AS, Kurmaz VA (2005) Thermodynamic and kinetic characteristics of intermediates of electrode reactions: determination by direct and combined electrochemical methods. Russ J Electrochem 41(2):122

    Article  CAS  Google Scholar 

  9. Krivenko AG, Kotkin AS, Kurmaz VA (2005) Thermodynamic and kinetic characteristics of intermediates of electrode reactions: a comparative investigation of a number of alkylaryl and alkyl halide radicals by the laser photoemission methods. Russ J Electrochem 41(2):137

    Article  CAS  Google Scholar 

  10. Gründler P, Kirbs A, Dunsch L (2009) Modern thermoelectrochemistry. ChemPhysChem 10(11):1722

    Article  Google Scholar 

  11. Lund H (1983) Practical problems in electrochemistry. In: Lund H, Baizer MM (eds) Organic electrochemistry. An introduction and a guide, 2nd edn. Marcel Dekker, New York, pp 161–233

    Google Scholar 

  12. Gritzner G (2011) Half a century of electrochemistry, mainly in non-aqueous electrolytes (a personal view). J Solid State Electrochem 15 (7/8) 1791

  13. Buxton GV, Greenstock CL, Helman WPh, Ross AR (1988) Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O) in aqueous-solution. J Phys Chem Ref Data 17(2):513

    CAS  Google Scholar 

  14. Hapiot Ph, Konovalov VV, Savéant J-M (1995) Application of laser pulse photoinjection of electrons from metal electrodes to the determination of reduction potentials of organic radicals in aprotic solvents. J Am Chem Soc 117(4):1428

    Article  CAS  Google Scholar 

  15. Krivenko AG, Kotkin AS, Kurmaz VA (2002) Prospects for determination of thermodynamic and kinetic parameters of intermediates of electrode reactions by laser photoemission. Mendeleev Commun 12(1):11

    Article  Google Scholar 

  16. Dixon WT, Norman ROC, Buley AJ (1964) Electron spin resonance studies of oxidation. 2. Aliphatic acids + substituted acids. J Chem Soc 3625

  17. Woodward JR, Lin TS, Sakaguchi Y, Hayashi H (2000) Detection of transient intermediates in the photochemical reaction of hydrogen peroxide with dimethyl sulfoxide by time-resolved EPR techniques. J Phys Chem A 104(3):557

    Article  CAS  Google Scholar 

  18. Veltwisch D, Janata E, Asmus K-D (1980) Primary processes in the reaction of OH·-radicals with sulphoxides. J Chem Soc Perkin Trans 2(1):146

    Google Scholar 

  19. Song JF, Chen ZP, Guo W, Wang FM (2003) In situ generation and detection of methyl radical by voltammetry. Chin Sci Bull 48(11):1093

    CAS  Google Scholar 

  20. Koulkes-Pujo AM, Moreau M, Sutton J (1981) Methane formation from the reactions of hydroxyl radicals and hydrogen-atoms with dimethylsulfoxide (DMSO). FEBS Lett 129(1):52

    Article  CAS  Google Scholar 

  21. Herscu-Kluska R, Masarwa A, Saphier M, Cohen H, Meyerstein D (2008) Mechanism of the reaction of radicals with peroxides and dimethyl sulfoxide in aqueous solution. Chem Eur J 14(19):5880

    Article  CAS  Google Scholar 

  22. Eberhardt MK, Colina R (1988) The reaction of OH radicals with dimethyl sulfoxide. A comparative study of Fenton’s reagent and the radiolysis of aqueous dimethyl sulfoxide solutions. J Org Chem 53(5):1071

    Article  CAS  Google Scholar 

  23. Bertilsson B-M, Gustafsson B, Kühn I, Torssel K (1970) Generation of radicals from sulphoxides with Fentons reagent—new radical alkylation method. Acta Chem Scand 24(10):3590

    Article  CAS  Google Scholar 

  24. Raju MR, Schillaci ME, Carpenter SG, Goodhead DT, Ward JF (1996) Radiobiology of ultrasoft X rays. V. Modification of cell inactivation by dimethyl sulfoxide. Radiat Res 145(5):563

    Article  CAS  Google Scholar 

  25. Zou H, Tai C, Gu XX, Zhu RH, Guo QH (2002) A new simple and rapid electrochemical method for the determination of hydroxyl radical generated by Fenton reaction and its application. Anal Bioanal Chem 373(1–2):111

    Article  CAS  Google Scholar 

  26. Scholz F, Gonzalez GLL, de Carvalho LM, Hilgemann M, Brainina KZ, Kahlert H, Jack RS, Minh DT (2007) Indirect electrochemical sensing of radicals and radical scavengers in biological matrices. Angew Chem Int Ed 46(42):8079

    Article  CAS  Google Scholar 

  27. Hilgemann M, Scholz F, Kahlert H, de Carvalho LM, da Rosa MB, Lindequist U, Wurster M, do Nascimento PC, Bohrer D (2010) Electrochemical assay to quantify the hydroxyl radical scavenging activity of medicinal plant extracts. Electroanal 22(4):406

    Article  CAS  Google Scholar 

  28. Zhu AW, Liu Y, Rui Q, Tian Y (2011) Selective and sensitive determination of hydroxyl radicals generated from living cells through an electrochemical impedance method. Chem Commun 47(14):4279

    Article  CAS  Google Scholar 

  29. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570

    Article  CAS  Google Scholar 

  30. Toffel P, Henglein A (1977) Polarogram of the free hydrogen atom and of some simple organic radicals. Discuss Faraday Soc 63:124

    Article  CAS  Google Scholar 

  31. Schiffrin DJ (1973) Application of the photo-electrochemical effect to the study of the electrochemical properties of radical: CO 2 · and ·CH3. Discuss Faraday Soc 56:75

    Article  CAS  Google Scholar 

  32. Benderskii VA, Krivenko AG, Kurmaz VA, Simbirtseva GV (1988) Reactions of normal-alkyl radicals at the mercury-electrode. Sov Electrochem 24(1):141

    Google Scholar 

  33. Eberson L (1999) Problems and prospects of the concerted dissociative electron transfer mechanism. Acta Chem Scand 53(10):751

    Article  CAS  Google Scholar 

  34. Ludvik J, Nygård B (1996) Electrochemistry of aromatic diselenides and ditellurides in aprotic media. Preceding formation of mercury-containing compounds. Electrochim Acta 41(10):1661

    Article  CAS  Google Scholar 

  35. Ludvik J, Nygård B (1997) Electrochemistry and metal complex formation of organic diselenides. J Electroanal Chem 423(1–2):1

    CAS  Google Scholar 

  36. Kurmaz VA, Gultyai VP (2010) Electrode reactions and electroanalysis of organomercury compounds. Russ Chem Rev 79(4):307

    Article  CAS  Google Scholar 

  37. Kurmaz VA, Ershler AB (2006) Acid-catalysed degradation of the organomercury intermediates of pentafluorophenylmercury bromide reduction near a mercury electrode. Mendeleev Commun 16(4):234

    Article  Google Scholar 

  38. Rufman NM, Rotenberg ZA (1980) Special kinetic features of the photo-decomposition of organolead compounds at lead electrode surfaces. Sov Electrochem 16(3):309

    Google Scholar 

  39. Wang LM, Zhang JS (2002) Ab initio study of reaction of dimethyl sulfoxide (DMSO) with OH radical. Chem Phys Lett 356(5–6):490

    Article  CAS  Google Scholar 

  40. Bartels DM, Lawler RG, Trifunac AD (1985) Electron T 1 measurements in short-lived free-radicals by dynamic polarization recovery. J Chem Phys 83(6):2686

    Article  CAS  Google Scholar 

  41. Opstad CL, Melo TB, Sliwka HR, Partali V (2009) Formation of DMSO and DMF radicals with minute amounts of base. Tetrahedron 65(36):7616

    Article  CAS  Google Scholar 

  42. Chaudhri SA, Göbl M, Freyholdt T, Asmus K-D (1984) A method to generate and study (CH3)2S+. radical cations. Reduction of Me2SO by H. atoms in aqueous HClO4 solutions. J Am Chem Soc 106(20):5988

    Article  CAS  Google Scholar 

  43. Occhialini D, Kristensen JS, Daasbjerg K, Lund H (1992) Estimation of reduction and standard potentials of some allyl and substituted alkyl radicals. Acta Chem Scand 46(5):474

    Article  CAS  Google Scholar 

  44. Lund H, Skov K, Pedersen SU, Lund T, Daasbjerg K (2000) On the determination and use of reduction potentials of short-lived radicals. A review. Collect Czech Chem Commun 65(6):829

    Article  CAS  Google Scholar 

  45. Krivenko AG, Kotkin AS, Kurmaz VA (2002) Mechanism of electroreduction of intermediates with and without a proton donor. Electrochim Acta 47(24):3891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Alexander G. Krivenko for helpful discussion. This work is supported by the Russian Foundation for Basic Research (project 09-03-00598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kurmaz.

Additional information

This article is dedicated to the 70th birthday of Fritz Pragst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurmaz, V.A., Kotkin, A.S. & Simbirtseva, G.V. Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules. J Solid State Electrochem 15, 2119–2126 (2011). https://doi.org/10.1007/s10008-011-1534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1534-1

Keywords

Navigation