Skip to main content
Log in

Electrocatalytic oxidation of glucose on nanoporous gold membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

With characteristic of structural integrity and high surface area, nanoporous gold (NPG) prepared by dealloying method is proposed to be a highly sensitive catalyst for glucose electrooxidation. It can be found that a-NPG which obtained by electrochemical corrosion method has the highest sensitivity for glucose electrooxidation among the three studied samples. Under alkaline conditions, the catalytic current density of a-NPG is over 1.5 times and 17 times higher than that of f-NPG (prepared by free corrosion) and poly-Au electrode, respectively. Using a-NPG sample for glucose detection, the obtained minimum sensible concentration are 413 nM in alkaline media and 1 μM in neutral solutions. The a-NPG electrode also shows stable recovery and reproducibility characteristics. These results indicate that NPG may work as an efficient electrode material for electrochemical sensors and a promising catalyst for alkaline glucose fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burke LD, Nugent PF (1997) Gold bull 30:43–53

    Article  CAS  Google Scholar 

  2. Burke LD, Nugent PF (1998) J Electroanal Chem 444:19–29

    Article  CAS  Google Scholar 

  3. Burke LD, Nuqent PF (1998) Gold Bull 31:39–50

    Article  CAS  Google Scholar 

  4. Chen A, Holt-Hindle P (2010) Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  5. Chen A, Lipkowski J (1999) J Phys Chem B 103:682–691

    Article  CAS  Google Scholar 

  6. Ding Y, Chen MW (2009) MRS Bull 34:569–576

    Article  CAS  Google Scholar 

  7. Ding Y, Erlebacher J (2003) J Am Chem Soc 125:7772–7773

    Article  CAS  Google Scholar 

  8. Ding Y, Kim YJ, Erlebacher J (2005) Adv Mater 16:1897–1900

    Article  Google Scholar 

  9. Dong H, Cao XD (2009) J Phys Chem C 113:603–609

    Article  CAS  Google Scholar 

  10. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Nature 410:450–453

    Article  CAS  Google Scholar 

  11. Ge XB, Wang RY, Cui SZ, Tian F, Xu LQ, Ding Y (2008) Electrochem Commun 10:1494–1497

    Article  CAS  Google Scholar 

  12. Ge XB, Wang RY, Liu PP, Ding Y (2007) Chem Mater 19:5827–5829

    Article  CAS  Google Scholar 

  13. Habrioux A, Sibert E, Servat K, Vogel W, Kokoh KB, Alonso-Vante N (2007) J Phys Chem B 111:10329–10333

    Article  CAS  Google Scholar 

  14. Hsiao MW, Adzic RR, Yeager EB (1996) J Electrochem Soc 143:759–767

    Article  CAS  Google Scholar 

  15. Huang JF (2008) Electroanalysis 20:2229–2234

    Article  CAS  Google Scholar 

  16. Huang W, Wang MH, Zheng JF, Li ZL (2009) J Phys Chem C 113:1800–1805

    Article  CAS  Google Scholar 

  17. Jia FL, Yu CF, Ai ZH, Zhang LZ (2007) Chem Mater 19:3648–3653

    Article  CAS  Google Scholar 

  18. Jia F, Yu CF, Deng KJ, Zhang LZ (2007) J Phys Chem C 111:8424–8431

    Article  CAS  Google Scholar 

  19. Kerzenmacher S, Ducre’e J, Zengerle R, Stetten FV (2008) J Power Sources 182:1–17

    Article  CAS  Google Scholar 

  20. Lee YJ, Park JY (2010) Sens Actuators B: Chem. doi:10.1016/j.snb.201011037

  21. Li YY, Ding Y (2010) J Phys Chem C 114:3175–3179

    Article  CAS  Google Scholar 

  22. Li Y, Song YY, Yang C, Xia XH (2005) Electrochem Commun 9:981–988

    Article  Google Scholar 

  23. Liu ZN, Huang LH, Zhang LL, Ma HY, Ding Y (2009) Electrochim Acta 54:7286–7293

    Article  CAS  Google Scholar 

  24. Oesch U, Janata J (1983) Electro chim Acta 28:1237–1246

    Article  CAS  Google Scholar 

  25. Park S, Chung TD, Kim HC (2003) Anal Chem 75:3046–3049

    Article  CAS  Google Scholar 

  26. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) J Electroanal Chem 196:127–144

    Article  Google Scholar 

  27. Xu CX, Su JX, Xu XH, Liu PP, Zhao HJ, Tian F, Ding Y (2007) J Am Chem Soc 129:42–43

    Article  CAS  Google Scholar 

  28. Xu CX, Wang LQ, Wang RY, Wang K, Zhang Y, Tian F, Ding Y (2009) Adv Mater 21:2165–2169

    Article  CAS  Google Scholar 

  29. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Electrochem Commun 6:66–70

    Article  CAS  Google Scholar 

  30. Yuan JH, Wang K, Xia XH (2005) Adv Funct Mater 15:803–809

    Article  CAS  Google Scholar 

  31. Zare HR, Habibirad AM (2006) J Solid State Electr 10:348–359

    Article  CAS  Google Scholar 

  32. Zhang JT, Liu PP, Ma HY, Ding Y (2007) J Phys Chem C 111:10382–10388

    Article  CAS  Google Scholar 

  33. Zhao CZ, Shao CL, Li MH, Jiao K (2007) Talanta 71:1769–1773

    Article  CAS  Google Scholar 

  34. Zhou YG, Yang S, Qian QY, Xia XH (2009) Electrochem Commun 11:216–219

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Prof. Y. Ding and Houyi Ma for valuable discussions and sharing their nanomaterials and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuling Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Cui, S. & Yan, X. Electrocatalytic oxidation of glucose on nanoporous gold membranes. J Solid State Electrochem 16, 1099–1104 (2012). https://doi.org/10.1007/s10008-011-1501-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1501-x

Keywords

Navigation