Skip to main content
Log in

Electrochemical response of natural and induced passivation of high strength duplex stainless steels in alkaline media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The passivation of two high strength duplex stainless steels (HSSS) was investigated in alkaline solutions simulating the pore solution of concrete by the growth of natural and induced passive films. Induced passive films were generated both by cyclic voltammetry and by chronoamperometry. Natural passive films were spontaneously grown by the immersion of the steel in the alkaline electrolyte. These passive layers were characterised by electrochemical impedance spectroscopy, corrosion current density (i corr) and corrosion potential (E corr) monitoring. The effect of significant parameters, such as the pH in the HSSS/alkaline solution interface, the composition of the duplex stainless steels and the ageing of the passive layer, on the electrochemical performance of both induced and spontaneously grown passive films has been analysed. The increase of alkalinity highly influences the electrochemical performance of the passive film by promoting the formation of a passive layer with a less resistant electrochemical response. The electrochemical behaviour of the passive layer is also affected by the alloying elements like Mo or Ni. Both natural and induced passive films show similar electrochemical trend with respect to significant parameters such as the pH and the composition of the steel. The ageing of the spontaneously grown passive layer promotes a higher resistive electrochemical response which might be related to the enrichment of the passive layer in non-conducting (or semi-conducting) oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Elsener B, DeFilippo D, Rossi A (1994) Modifications of passive films. In: Marcus P, Baroux B, Keddam M (eds.) EFC publ. No 12, The Institute of Materials, London, pp 6–11

  2. Elsener B, Rossi A (1995) Mater Sci Forum 192–194:225–236

    Article  Google Scholar 

  3. Freire L, Carmezim MJ, Ferreira MGS, Montemor MF (2010) Electrochim Acta 55:6174–6181

    Article  CAS  Google Scholar 

  4. Bastidas JM, Torres CL, Cano E, Polo JL (2002) Corros Sci 44:625–633

    Article  CAS  Google Scholar 

  5. Montemor MF, Simoes AM, Ferreira MGS, Da Cunha Belo M (1999) Corros Sci 41:17–34

    Article  CAS  Google Scholar 

  6. Lee JB, Kim SW (2007) Mater Chem Phys 104:98–104

    Article  CAS  Google Scholar 

  7. Kocijan A, Donik C, Jenko M (2007) Corros Sci 49:2083–2098

    Article  CAS  Google Scholar 

  8. Lu YC, Clayton CR, Brooks R (1989) Corros Sci 29:863–880

    Article  CAS  Google Scholar 

  9. Clayton CR, Lu YC (1986) J Electrochem Soc 133:2465–2473

    Article  CAS  Google Scholar 

  10. Brooks AR, Clayton CR, Doss K, Lu YC (1986) J Electrochem Soc 133:2459–2464

    Article  CAS  Google Scholar 

  11. Schmuki P, Böhni H (1992) J Electrochem Soc 139:1908–1913

    Article  CAS  Google Scholar 

  12. Szklarska-Smialowska Z (2002) Corros Sci 44:1143–1149

    Article  CAS  Google Scholar 

  13. Ameer MA, Fekry AM, El-Taib Heakal F (2004) Electrochim Acta 50:43–49

    Article  CAS  Google Scholar 

  14. Boucherit N, Hugot-le Goff A, Joiret S (1992) Corrosion 48:569–579

    Article  CAS  Google Scholar 

  15. Vignal V, Olive JM, Desjardins D (1999) Corros Sci 41:869–884

    Article  CAS  Google Scholar 

  16. Tobler WJ, Virtanen S (2006) Corros Sci 48:1585–1607

    Article  CAS  Google Scholar 

  17. Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Matykina E (2008) Corros Sci 50:780–794

    Article  CAS  Google Scholar 

  18. Ilevbare GO, Burstein GT (2001) Corros Sci 43:485–513

    Article  CAS  Google Scholar 

  19. Castro-Borges P, de Rincón OT, Moreno EI, Torres-Acosta AA, Martínez-Madrid M, Knudsen A (2002) Mater Perform 41:50–55

    CAS  Google Scholar 

  20. Knudsen A, Jensen FM, Klinghoffer O, Skovsgaard T (1998) Cost-effective enhancement of durability of concrete structures by intelligent use of stainless steel reinforcement. In: Conference on Corrosion and rehabilitation of reinforced concrete structures, Florida, December 8–11

  21. Klingghoffer O, Forlung T, Kofoad B, Knudsen A, Jensen FM, Skovsgaard T (2000) Practical and economical aspects of application of austenitic stainless steel , AISI 316, as reinforcement in concrete. In: Mietz J, Polder R, Elsener B (eds.) Corrosion of reinforcement in concrete, European Federation of corrosion, IOM Communications , London, pp 121–133

  22. Abreu CM, Cristóbal MJ, Losada R, Nóvoa XR, Pena G, Pérez MC (2004) Electrochim Acta 49:3049–3056

    Article  CAS  Google Scholar 

  23. Abreu CM, Cristóbal MJ, Losada R, Nóvoa XR, Pena G, Pérez MC (2006) Electrochim Acta 51:1881–1890

    Article  CAS  Google Scholar 

  24. Abreu CM, Cristóbal MJ, Losada R, Nóvoa XR, Pena G, Pérez MC (2004) J Electroanal Chem 572:335–345

    Article  CAS  Google Scholar 

  25. Bautista A, Blanco G, Velasco F, Gutiérrez A, Soriano L, Palomares FJ, Takenouti H (2009) Corros Sci 51:785–792

    Google Scholar 

  26. Addari D, Elsener B, Rossi A (2008) Electrochim Acta 53:8078–8086

    Article  CAS  Google Scholar 

  27. Freire L, Carmezim MJ, Ferreira MGS, Montemor MF (2011) Electrochim Acta. doi:10.1016/j.electacta.2011.02.094

  28. Sánchez M, Gregori J, Alonso C, García-Jareño JJ, Takenouti H, Vicente F (2007) Electrochim Acta 52:7634–7641

    Article  Google Scholar 

  29. Nürnberger U, Wu Y (2008) Mater Corros 59:144–158

    Article  Google Scholar 

  30. Wu Y, Nürnberger U (2009) Mater Corros 60:1–10

    Google Scholar 

  31. Rajan TV, Sharma CP, Sharma A (2006) Heat treatment-Principales and techniques Revised Edition, ISBE-81-203-0716-X. Prentice-Hall of Indian Private Limited, New Delhi, pp 48–51

    Google Scholar 

  32. Stern M, Geary AL (1957) J Electrochem Soc 104:56–63

    Article  CAS  Google Scholar 

  33. Poorqasemi E, Abootalebi O, Peikari M, Haqdar F (2009) Corros Sci 51:1043–1054

    Article  CAS  Google Scholar 

  34. Pourbaix M (1968) Atlas of Electrochemical Equilibrium in Aqueous Solution. Pergamon Press, Oxford

    Google Scholar 

  35. Kim JD, Pyun SI (1995) Electrochim Acta 40:1863–1869

    Article  CAS  Google Scholar 

  36. Abreu CM, Cristóbal MJ, Losada R, Nóvoa XR, Pena G, Pérez MC (2008) Electrochim Acta 53:6000–6007

    Article  CAS  Google Scholar 

  37. Abreu CM, Cristóbal MJ, Nóvoa XR, Pena G, Pérez MC, Rodriguez RJ (2002) Surf Coatings Tech 158–159:582–587

    Article  Google Scholar 

  38. Kim JD, Pyun SI (1996) Corros Sci 38:1093–1102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support from Spanish MICINN for the financial support given to this research in BIA2007-65394 project and also for the FPI given to H. Mahmoud. M. Sánchez acknowledges to Spanish Ministry of Education her post-doctoral position. The authors also acknowledge to INOXFIL for supplying of the HSSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, M., Mahmoud, H. & Alonso, M.C. Electrochemical response of natural and induced passivation of high strength duplex stainless steels in alkaline media. J Solid State Electrochem 16, 1193–1202 (2012). https://doi.org/10.1007/s10008-011-1498-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1498-1

Keywords

Navigation