Skip to main content

Advertisement

Log in

Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The evolution of hydrogen and oxygen gasses in a 0.36-M KOH electrolyte was observed in a magnetic field, and the void fraction was calculated by a hydrodynamic model. Both gasses evolving on a platinum working electrode formed a bubble layer which increased the ohmic resistance. In addition to natural convection, magnetohydrodynamic (MHD) convection in a magnetic field improved the electrolytic conductivity by supplying a fresh solution (pumping effect) and removing gas bubbles. The MHD convection reduced the void fraction of hydrogen gas more than that of oxygen, which can be explained by the poor wettability of the oxygen evolving electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zeng K, Zhang DK (2010) Prog Energ Combust 36:307–326

    Article  CAS  Google Scholar 

  2. Wendt H, Imarisio G (1988) J Appl Electrochem 18:1–14

    Article  CAS  Google Scholar 

  3. Roziere J, Jones DJ (2003) Annu Rev Mater Res 33:503–555

    Article  CAS  Google Scholar 

  4. Mitlitsky F, Myers B, Weisberg AH (1998) Energ Fuel 12:56–71

    Article  CAS  Google Scholar 

  5. Chan SC, Chen CR, Liu CH (2010) Sens Actuator A-Phys 163:501–509

    Article  Google Scholar 

  6. Van Den Broek DM, Elwenspoek M (2008) Sens Actuator A-Phys 145:387–393

    Article  Google Scholar 

  7. Vogt H (1993) Electrochim Acta 38:1421–1426

    Article  CAS  Google Scholar 

  8. Vogt H (1993) Electrochim Acta 38:1427–1431

    Article  CAS  Google Scholar 

  9. Mandin P, Wuthrich R, Roustan H (2010) AICHE J 56:2446–2454

    CAS  Google Scholar 

  10. Mandin Ph, Ait Aissa A, Roustan H, Hamburger J, Picard G (2008) Chem Eng Process 47:1926–1932

    Article  CAS  Google Scholar 

  11. Mandin Ph, Hamburger J, Bessou S, Picard G (2005) Electrochim Acta 51:1140–1156

    Article  Google Scholar 

  12. Mat MD, Aldas K (2005) Int J Hydrog Energy 30:411–420

    Article  CAS  Google Scholar 

  13. Boissonneau P, Byrne P (2000) J Appl Electrochem 30:767–775

    Article  CAS  Google Scholar 

  14. Vogt H, Balzer RJ (2005) Electrochim Acta 50:2073–2079

    Article  CAS  Google Scholar 

  15. Wuthrich R, Comninellis C, Bleuler H (2005) Electrochim Acta 50:5242–5246

    Article  Google Scholar 

  16. Gabrielli C, Huet F, Keddam M, Macias A, Sahar A (1989) J Appl Electrochem 19:617–629

    Article  CAS  Google Scholar 

  17. Dukovic J, Tobias CW (1987) J Electrochem Soc 134:331–343

    Article  CAS  Google Scholar 

  18. Coenen ELJ, Janssen LJJ (1997) J Appl Electrochem 27:1143–1148

    Article  CAS  Google Scholar 

  19. Weijs MPMG, Janssen LJJ, Visser GJ (1997) J Appl Electrochem 27:371–378

    Article  CAS  Google Scholar 

  20. Riegel H, Mitrovic J, Stephan K (1998) J Appl Electrochem 28:10–17

    Article  CAS  Google Scholar 

  21. Hine F, Murakami K (1980) J Electrochem Soc 127:292–297

    Article  CAS  Google Scholar 

  22. Funk JE, Thorpe JF (1969) J Electrochem Soc 116:48–54

    Article  CAS  Google Scholar 

  23. Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E (2007) Electrochim Acta 52:3889–3894

    Article  CAS  Google Scholar 

  24. Grigoriev SA, Porembsky VI, Fateev VN (2006) Int J Hydrog Energy 31:171–175

    Article  CAS  Google Scholar 

  25. Linkous CA, Anderson HR, Kopitzke RW, Nelson GL (1998) Int J Hydrog Energy 23:525–529

    Article  CAS  Google Scholar 

  26. Lai Y, Chen Y, Tang Y, Gong D, Chen Z, Lin C (2009) Electrochem Commun 11:2268–2271

    Article  CAS  Google Scholar 

  27. Kim D, Hwang W, Park HC, Lee KH (2006) J Micromech Microeng 16:2593–2597

    Article  CAS  Google Scholar 

  28. Zhu LB, Xiu YH, Xu JW, Tamirisa PA, Hess DW, Wong CP (2005) Langmuir 21:11208–11212

    Article  CAS  Google Scholar 

  29. Fernandez D, Diao Z, Dunne P, Coey JMD (2010) Electrochim Acta 55:8664–8672

    Article  CAS  Google Scholar 

  30. Matsushima H, Kiuchi D, Fukunaka Y (2009) Electrochim Acta 54:5858–5862

    Article  CAS  Google Scholar 

  31. Koza JA, Muehlenhoff S, Uhlemann M, Eckert K, Gebert A, Schultz L (2009) Electrochem Commun 11:425–429

    Article  CAS  Google Scholar 

  32. Koza JA, Uhlemann M, Gebert A, Schultz L (2008) Electrochem Commun 10:1330–1333

    Article  CAS  Google Scholar 

  33. Iida T, Matsushima H, Fukunaka Y (2007) J Electrochem Soc 154:E112–E115

    Article  CAS  Google Scholar 

  34. Matsushima H, Kiuchi D, Fukunaka Y, Kuribayashi K (2009) Electrochem Commun 11:1721–1723

    Article  CAS  Google Scholar 

  35. Mandin Ph, Matsushima H, Fukunaka Y, Wuehrich R, Herrera Calderon E, Lincot D (2008) Journal of the Japanese Society of Microgravity Applications 25:511–515

    Google Scholar 

  36. Kiuchi D, Matsushima H, Fukunaka Y, Kuribayashi K (2006) J Electrochem Soc 153:E138–E143

    Article  CAS  Google Scholar 

  37. Matsushima H, Fukunaka Y, Kuribayashi K (2006) Electrochim Acta 51:4190–4198

    Article  CAS  Google Scholar 

  38. Matsushima H, Nishida T, Konishi Y, Fukunaka Y, Ito Y, Kuribayashi K (2003) Electrochim Acta 48:4119–4125

    Article  CAS  Google Scholar 

  39. Li SD, Wang CC, Chen CY (2009) Electrochim Acta 54:3877–3883

    Article  CAS  Google Scholar 

  40. Wang MY, Wang Z, Guo ZC (2009) Int J Hydrog Energy 34:5311–5317

    Article  CAS  Google Scholar 

  41. Cheng H, Scott K, Ramshaw C (2002) J Electrochem Soc 149:D172–D177

    Article  CAS  Google Scholar 

  42. Guelcher SA, Solomentsev YE, Sides PJ, Anderson JL (1998) J Electrochem Soc 145:1848–1855

    Article  CAS  Google Scholar 

  43. Sides PJ, Tobias CW (1985) J Electrochem Soc 132:583–587

    Article  CAS  Google Scholar 

  44. Lubetkin S (2002) Electrochim Acta 48:357–375

    Article  CAS  Google Scholar 

  45. Vogt H (1981) Electrochim Acta 26:1311–1317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Sasakawa Scientific Research Grant from The Japan Science Society (No. 23–202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayoshi Matsushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushima, H., Iida, T. & Fukunaka, Y. Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field. J Solid State Electrochem 16, 617–623 (2012). https://doi.org/10.1007/s10008-011-1392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1392-x

Keywords

Navigation