Skip to main content
Log in

The electrochemistry of particles, droplets, and vesicles – the present situation and future tasks

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Presently, a plethora of techniques is available to study the electrochemical properties of solid inorganic and organic micro- and nano-particles immobilized on electrode surfaces, provided that they possess a faradaic electroactivity. Similarily, immobilized droplets of liquids and solutions, which are immiscible with the electrolyte solution, give access to the three-phase electrochemistry of redox centers in the droplets, allowing determinations of free energies of ion transfer between the immiscible liquid phases. Possible and necessary future activities in the field of immobilized particles and droplets will be discussed here. The electrochemistry of suspended micro- and nano-particles possessing faradaic electroactivity is much more complex and needs special attention in future research. Finally, the electrochemistry of liposomes and biological vesicles, which do not possess faradaic activity, but the ability to produce capacitive signals upon attachment to electrodes, will be discussed focusing on possible future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scholz F, Lange B (1992) Trends Anal Chem 11:359–367

    Article  CAS  Google Scholar 

  2. Scholz F, Meyer B (1994) Chem Soc Rev 23:341–347

    Article  CAS  Google Scholar 

  3. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  4. Oldham KB (1998) J Solid State Electrochem 2:367–377

    Article  CAS  Google Scholar 

  5. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) J Solid State Electrochem 4:314–324

    Article  Google Scholar 

  6. Komorsky-Lovrić Š, Mirčeski V, Kabbe Ch, Scholz F (2004) J Electroanal Chem 566:371–377

    Article  Google Scholar 

  7. Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) J Chem Soc Perkin Trans 2:1735–1742

    Google Scholar 

  8. Bond AM, Fletcher S, Symons PG (1998) Analyst 123:1891–1904

    Article  CAS  Google Scholar 

  9. Neufeld A (2003) Investigations using a Kelvin probe instrument and solid state electrochemical techniques: the initiation mechanism of corrosion of zinc and the solid-solid electrochemical transformation of CuTCNQ, PhD Thesis, Monash University, Melbourne

  10. Neufeld AK, Madsen I, Bond AM, Hogan CF (2003) Chem Mater 15:3573–3585

    Article  CAS  Google Scholar 

  11. Nafady A, Bond AM, Bilyk A (2008) J Phys Chem C 112:6700–6709

    Article  CAS  Google Scholar 

  12. Doménech A, Doménech-Carbó MT, Vázquez de Agredos Pascual ML (2006) J Phys Chem B 110:6027–6039

    Article  Google Scholar 

  13. Doménech A, Doménech-Carbó MT, Sánchez del Río M, Vázquez de Agredos Pascual ML, Lima E (2009) New J Chem 33:2371–2379

    Article  Google Scholar 

  14. Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L (2001) Electroanal 13:927–935

    Article  Google Scholar 

  15. van Oorschot IHM, Grygar T, Dekkers MJ (2001) Earth Planet Sci Lett 193:631–642

    Article  Google Scholar 

  16. Grygar T, Bezdicka P, Hradil D, Doménech-Carbo A, Marken F, Pikna L, Cepria G (2002) Analyst 127:1100–1107

    Article  CAS  Google Scholar 

  17. Ramaraj R, Kabbe Ch, Scholz F (2000) Electrochem Commun 2:190–194

    Article  CAS  Google Scholar 

  18. Keane L, Hogan C, Forster RJ (2002) Langmuir 18:4826–4833

    Article  CAS  Google Scholar 

  19. Walsh DA, Keyes TE, Forster RJ (2002) J Electroanal Chem 538/539:75–85

    Article  Google Scholar 

  20. Fay N, Dempsey E, Kennedy A, McCormac T (2003) J Electroanal Chem 556:63–74

    Article  CAS  Google Scholar 

  21. Eklund JC, Bond AM (1999) J Amer Chem Soc 121:8306–8312

    Article  CAS  Google Scholar 

  22. Perez-Ramirez J, Mul G, Kapteijn F, Moulijn JA, Overweg AR, Domenech A, Ribera A, Arends IWCE (2002) J Catal 207:113–126

    Article  CAS  Google Scholar 

  23. Doménech A, Perez-Ramirez J, Ribera A, Mul G, Kapteijn F, Arends IWCE (2002) J Electroanal Chem 519:72–84

    Article  Google Scholar 

  24. Doménech A, Alarcón J (2002) J Solid State Electrochem 6:443–450

    Article  Google Scholar 

  25. Inzelt G (2002) J Solid State Electrochem 6:265–271

    Article  CAS  Google Scholar 

  26. Inzelt G (2003) J Solid State Electrochem 7:503–510

    Article  CAS  Google Scholar 

  27. Inzelt G, Puskás Z, Németh K, Varga I (2005) J Solid State Electrochem 9:823–835

    Article  CAS  Google Scholar 

  28. Marken F, Webster RD, Bull St D, Davies St G (1997) J Electroanal Chem 437:209–218

    Article  CAS  Google Scholar 

  29. Davies TJ, Brooks BA, Fisher AC, Yunus K, Wilkins AJ, Greene PR, Wadhawan JD, Compton RG (2003) J Phys Chem B 107:6431–6444

    Article  CAS  Google Scholar 

  30. Scholz F, Komorsky-Lovrić Š, Lovrić M (2000) Electrochem Commun 2:112–118

    Article  CAS  Google Scholar 

  31. Scholz F, Gulaboski R (2005) Chemphyschem 6:16–28

    Article  CAS  Google Scholar 

  32. Scholz F (2006) Annu Rep Progr Chem Section C 102:43–70

    Article  CAS  Google Scholar 

  33. Doménech A, Koshevoy IO, Montoya N, Pakkanen TA (2011) Electrochem Commun 13:96–98

    Article  Google Scholar 

  34. Fiedler DA, Besenhard JO, Fooken MH (1997) J Power Sources 69:157–160

    Article  CAS  Google Scholar 

  35. Dokko K, Horikoshi S, Itoh T, Nishizawa M, Abe T, Umeda M, Uchida I (2002) J Solid State Electrochem 6:188–193

    CAS  Google Scholar 

  36. Scholz F, Dostal A (1995) Angew Chem 107:2876–2878 (Angew Chem Int Ed Engl 34 (1995) 2685–2687)

    Article  Google Scholar 

  37. Bárcena Soto M, Scholz F (2002) J Electroanal Chem 521:183–189

    Article  Google Scholar 

  38. Widmann A, Kahlert H, Petrovic-Prelevic I, Wulff H, Yakhmi JV, Bagkar N, Scholz F (2002) Inorg Chem 42:5706–5715

    Article  Google Scholar 

  39. Bond AM, Scholz F (1991) Langmuir 7:3197–3204

    Article  CAS  Google Scholar 

  40. Meyer B, Zhang S, Scholz F (1996) Fresenius' J Anal Chem 356:267–270

    CAS  Google Scholar 

  41. Reddy SJ, Dostal A, Scholz F (1996) J Electroanal Chem 403:209–212

    Article  Google Scholar 

  42. Scholz F, Lange B, Jaworski A, Pelzer J (1991) Fresenius J Anal Chem 340:140–144

    Article  CAS  Google Scholar 

  43. Meyer B (1995) Entwicklung von festkörperelektrochemischen Methoden für die Mikroanalyse von Mineralen und synthetischen Festkörpern. PhD thesis, Humboldt-Universität, Berlin

  44. Schröder U, Meyer B, Scholz F (1996) J Anal Chem 356:295–298

    Google Scholar 

  45. Suárez MF, Bond AM, Compton RG (1999) J Solid State Electrochem 4:24–33

    Article  Google Scholar 

  46. Kucernak AR, Chowdhury PB, Wilde CP, Kelsall GH, Zhu YY, Williams DE (2000) Electrochim Acta 45:4483–4491

    Article  CAS  Google Scholar 

  47. Hasse U, Wagner K, Scholz F (2004) J Solid State Electrochem 8:842–853

    Article  CAS  Google Scholar 

  48. Hasse U, Fletcher S, Scholz F (2006) J Solid State Electrochem 10:833–840

    Article  CAS  Google Scholar 

  49. Bárcena Soto M, Kubsch G, Scholz F (2002) J Electroanal Chem 528:18–26

    Article  Google Scholar 

  50. Bárcena Soto M, Scholz F (2002) J Electroanal Chem 528:27–32

    Article  Google Scholar 

  51. Lovric M, Scholz F (1997) J Solid State Electrochem 1:108–113

    Article  CAS  Google Scholar 

  52. Lovric M, Hermes M, Scholz F (1998) J Solid State Electrochem 2:401–404

    Article  CAS  Google Scholar 

  53. Lovric M, Scholz F (1999) J Solid State Electrochem 3:172–175

    Article  CAS  Google Scholar 

  54. Myland JC, Oldham KB (2000) Electrochem Commun 2:541–546

    Article  CAS  Google Scholar 

  55. Hasse U, Scholz F (2001) Electrochem Commun 3:429–434

    Article  CAS  Google Scholar 

  56. Lovric M, Hermes M, Scholz F (2000) J Solid State Electrochem 4:394–401

    Article  CAS  Google Scholar 

  57. Takeda N, Stawasz ME, Parkinson BA (2001) J Electroanal Chem 498:19–33

    Article  CAS  Google Scholar 

  58. Komorsky-Lovric Š, Scholz F (1998) J Electroanal Chem 445:81–87

    Article  CAS  Google Scholar 

  59. Ura H, Nishina T, Uchida I (1995) J Electroanal Chem 396:169–173

    Article  Google Scholar 

  60. Uchida I, Fujiyoshi H, Waki S (1997) J Power Sources 68:139–144

    Article  CAS  Google Scholar 

  61. Perdicakis M, Grosselin N, Bessière J (1997) Electrochim Acta 42:3351–3358

    Article  CAS  Google Scholar 

  62. Hasse U, Scholz F (2004) Electrochem Commun 6:409–412

    Article  CAS  Google Scholar 

  63. Hasse U, Scholz F (2005) Electrochem Commun 7:173–176

    Article  CAS  Google Scholar 

  64. Scholz F, Hellberg D, Harnisch F, Hummel A, Hasse U (2004) Electrochem Commun 6:929–933

    Article  CAS  Google Scholar 

  65. Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305–309

    Article  CAS  Google Scholar 

  66. Hellberg D, Scholz F, Schubert F, Lovrić M, Omanović D, Agmo Hernández V, Thede R (2005) J Phys Chem B 109:14715–14726

    Article  CAS  Google Scholar 

  67. Agmo Hernández V, Scholz F (2006) Langmuir 22:10723–10731

    Article  Google Scholar 

  68. Agmo Hernández V, Scholz F (2008) Isr J Chem 48:169–184

    Article  Google Scholar 

  69. Agmo Hernández V, Scholz F (2008) Bioelectrochemistry 74:149–156

    Article  Google Scholar 

  70. Agmo Hernández V, Hermes M, Milchev A, Scholz F (2009) J Solid State Electrochem 13:639–649

    Article  Google Scholar 

  71. Agmo Hernández V, Milchev A, Scholz FJ (2009) J Solid State Electrochem 13:1111–1114

  72. Agmo Hernández V, Niessen J, Harnisch F, Block S, Greinacher A, Kroemer HK, Helm CA, Scholz F (2008) Bioelectrochemistry 74:210–216

    Article  Google Scholar 

  73. Czesnick C (2010) Nitric oxide effects on liposomes and plant plasma membranes. Diploma thesis, University of Greifswald

Download references

Acknowledgments

I thankfully acknowledge the stimulating discussions of this paper with Stephen Fletcher, Loughborough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, F. The electrochemistry of particles, droplets, and vesicles – the present situation and future tasks. J Solid State Electrochem 15, 1699–1702 (2011). https://doi.org/10.1007/s10008-011-1318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1318-7

Keywords

Navigation