Skip to main content
Log in

Milestones of the development of kinetics of electrode reactions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The birth and the development of the kinetics of electrode processes–mostly focusing on the case of the hindered charge transfer step and the early period–are reviewed. It is shown how this important branch of electrochemistry was established and how and why the ideas of chemical kinetics have been introduced in electrochemistry. The history of electrode kinetics represents a good example for the progress of science in general, since it can be followed how the experimental observations conduce to the development of theory and how the theory influences further research. It is also demonstrated that the acceptance of new ideas is a thorny path. An attempt is made to acknowledge the merit of the scientists whose experimental or theoretical contributions brought paradigmatic changes in the thinking about the nature of electrode processes. In this context, the appropriate naming of equations is also discussed by using the example of the Erdey-Grúz–Volmer vs. Butler–Volmer equation. A discussion concerning the present trends is also included, which perhaps may predict the near future. A longer prognosis is avoided since the history of science teaches us that the real breakthroughs could not be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bard AJ, Inzelt G, Scholz F (eds) (2008) Electrochemical dictionary. Springer, Berlin

    Google Scholar 

  2. Dunsch L (1985) Geschichte der Elektrochemie. VEB Deutscher Verlag f Grundstoffindustrie, Leipzig

    Google Scholar 

  3. Inzelt G (2006) J Solid State Electrochem 10:1008

    Article  CAS  Google Scholar 

  4. Laidler KJ (1993) The world of physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  5. Wilhelmy LF (1850) Annual Phys 81:413

    Google Scholar 

  6. Guldberg CM, Waage P (1864) Forhand Videnskabs-Selskab Christiania 35:35, 92, 111

    Google Scholar 

  7. Guldberg CM, Waage P (1879) J Prakt Chem 19:69

    Article  CAS  Google Scholar 

  8. Van’t Hoff JH (1884) Études de dynamique chimique. Muller F, Amsterdam

    Google Scholar 

  9. Arrhenius S (1889) Z Phys Chem 4:226

    Google Scholar 

  10. Tafel J (1900) Z Phys Chem 34:187

    CAS  Google Scholar 

  11. Tafel J (1905) Z Phys Chem 50:641

    CAS  Google Scholar 

  12. Tafel J (1906) Z Elektrochem 12:112

    Article  CAS  Google Scholar 

  13. Caspari WA (1899) Z Phys Chem 30:89

    Google Scholar 

  14. Haber F (1900) Z Phys Chem 32:194

    Google Scholar 

  15. Fleishmann M, Pons S (1989) J Electroanal Chem 261:301

    Article  Google Scholar 

  16. Haber F, Schmidt C (1900) Z Phys Chem 32:271

    CAS  Google Scholar 

  17. Russ R (1903) Z Phys Chem 44:642

    Google Scholar 

  18. Haber F, Russ R (1904) Z Phys Chem 47:258

    Google Scholar 

  19. Haber F (1898) Z Elektrochem 4:506

    Article  CAS  Google Scholar 

  20. Heyrovský H (1923) Philos Mag 45:303

    Google Scholar 

  21. Butler JAV (1924) Trans Faraday Soc 19:729

    Article  Google Scholar 

  22. Butler JAV (1924) Trans Faraday Soc 19:734

    Article  Google Scholar 

  23. Audubert R (1924) J chim phys 21:351

    Google Scholar 

  24. Bowden FP, Riedel EK (1928) Proc R Soc A 120:59

    Article  CAS  Google Scholar 

  25. Baars E (1928) Sitzungsber Ges Beförd Naturwiss Marb 63:213

    CAS  Google Scholar 

  26. Brandes H (1929) Z phys Chem A 142:97

    CAS  Google Scholar 

  27. Erdey-Grúz T, Volmer M (1930) Z phys Chem A 150:203

    Google Scholar 

  28. Heyrovský J (1924) Trans Faraday Soc 19:785

    Article  Google Scholar 

  29. Volmer M (1928) Z Phys Chem 139:597

    Google Scholar 

  30. De Levie R (2000) J Chem Educ 77:610

    Article  Google Scholar 

  31. JO’M B, Razumney GA (1967) Electrocrystallization. Plenum, New York

    Google Scholar 

  32. Bockris JO’M, Reddy AKN (1970) Modern electrochemistry. Plenum, New York

    Google Scholar 

  33. Bockris JO’M, Rand DAJ, Welch BJ (1977) Trends in electrochemistry. Plenum, New York, p 10

    Google Scholar 

  34. Bockris JO’M, Khan SUM (1993) Surface electrochemistry. Plenum, New York London, pp 213–215

    Google Scholar 

  35. Damaskin BB, Petrii OA (1975) Vvedeniye v elektrokhimicheskuyu kinetiku. Vysshaya shkola, Moscow, p 243

    Google Scholar 

  36. Brenet J, Traore K (1971) Transfer coefficients in electrochemical kinetics. Ch 2. Academic Press, London

    Google Scholar 

  37. Hills GJ, Ives DJG (1961) Hydrogen electrode. In: Ives DJG, Janz GJ (eds) Reference electrodes. Academic Press, London, pp 76–79

    Google Scholar 

  38. Erdey-Grúz T, Volmer M (1931) Z phys Chem A 157:165

    Google Scholar 

  39. Volmer M, Weber A (1926) Z phys Chem A 119:277

    CAS  Google Scholar 

  40. Stranski IN (1931) Z phys Chem B 11:346

    Google Scholar 

  41. Frumkin AN (1932) Z phys Chem A 160:116

    Google Scholar 

  42. Brönsted JN (1924) Z Phys Chem 108:185

    Google Scholar 

  43. Brönsted JN (1928) Chem Rev 5:231

    Article  Google Scholar 

  44. Brönsted JN (1931) J Am Chem Soc 53:3624

    Article  Google Scholar 

  45. Frumkin AN (1933) Z phys Chem A 164:121

    Google Scholar 

  46. Frumkin AN (1937) Acta Physicochim URSS 6:502

    Google Scholar 

  47. Dolin P, Ershler BV, Frumkin AN (1940) Acta Physichochim USSR 13(6):779

    CAS  Google Scholar 

  48. Frumkin AN, Dolin P, Ershler BV (1940) Acta Physichochim USSR 13(6):793

    CAS  Google Scholar 

  49. Wagner C, Traud W (1938) Z Elektrochem 44:391

    CAS  Google Scholar 

  50. Horiuti J, Polányi M (1935) Acta Physicochim URSS 2:505 [In English: J Molecular Catalysis (2003) A 199:185]

  51. Gurney RW (1931) Proc R Soc Lond A 134:137

    Article  Google Scholar 

  52. Butler JAV (1932) Trans Faraday Soc 28:379

    Article  CAS  Google Scholar 

  53. Hammett LP (1933) Trans Faraday Soc 29:770

    Article  CAS  Google Scholar 

  54. Butler JAV (1962) Chemical thermodynamics 5th edition. MacMillen, London

    Google Scholar 

  55. Bockris JO’M (1991) Electrochim Acta 36:1

    Article  Google Scholar 

  56. Stern M, Geary AL (1957) J Electrochem Soc 104:56

    Article  CAS  Google Scholar 

  57. Ševčík A (1948) Coll Czech Chem Commun 13:349

    Google Scholar 

  58. Randles JEB (1948) Trans Faraday Soc 44:327

    Article  CAS  Google Scholar 

  59. Nicholson RS, Shain I (1964) Anal Chem 36:706

    Article  CAS  Google Scholar 

  60. Adams RN (1976) Anal Chem 48:1126A

    Article  CAS  Google Scholar 

  61. Amatore CA, Jutland A, Pfluger F (1987) J Electroanal Chem 218:361

    Article  CAS  Google Scholar 

  62. Wipf DO, Kristensen EW, Deakin MR, Wightman RM (1988) Anal Chem 60:306

    Article  CAS  Google Scholar 

  63. Levich VG (1952) Physico-chemical hydrodynamics. Izd Akad Nauk SSSR, Moscow (in Russian)

    Google Scholar 

  64. Frumkin AN, Nekrasov LN, Levich VG (1959) J Electroanal Chem 1:84

    Article  Google Scholar 

  65. Newman J (1966) J Electrochem Soc 113:1235

    Article  CAS  Google Scholar 

  66. Retter U, Lohse H (2010) Electrochemical impedance spectroscopy. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 159–178

    Chapter  Google Scholar 

  67. Macdonald DD (2006) Electrochim Acta 51:1376

    Article  CAS  Google Scholar 

  68. Hevesy G, Zechmeister L (1920) Z Elektrochem 26:151

    CAS  Google Scholar 

  69. Balashova NA (1955) Dokl Akad Nauk SSSR 103:639

    CAS  Google Scholar 

  70. Balashova NA, Kazarinov VE (1969) Use of radiotracer method for the investigation of electric double layer structure. In: Bard AJ (ed) Electroanalytical chemistry vol 3. Marcel Dekker, New York, pp 135–197

    Google Scholar 

  71. Horanyi G (1980) Electrochim Acta 25:43

    Article  CAS  Google Scholar 

  72. Horányi G (ed) (2004) Radiotracer studies of interfaces. Elsevier, Amsterdam

    Google Scholar 

  73. Nomura T, Iijima M (1981) Anal Chim Acta 131:97

    Article  CAS  Google Scholar 

  74. Kaufman JH, Kanazawa KK, Street GB (1984) Phys Rev Lett 53:2461

    Article  CAS  Google Scholar 

  75. Bruckenstein S, Swathirajan S (1985) Electrochim Acta 30:851

    Article  CAS  Google Scholar 

  76. Geske DH, Maki AH (1960) J Am Chem Soc 82:2671

    Article  CAS  Google Scholar 

  77. Maki AH, Geske DH (1959) J Chem Phys 30:1356

    Article  CAS  Google Scholar 

  78. Kuwana T, Darlington RK, Leddy DW (1964) Anal Chem 36:2023

    Article  CAS  Google Scholar 

  79. Neudeck A, Marken F, Compton RG (2010) UV/Vis/NIR spectroelectrochemistry. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 179–200

    Chapter  Google Scholar 

  80. Jeanmaire DL, Suchanski MR, Van Duyne RP (1975) J Am Chem Soc 97:1699

    Article  CAS  Google Scholar 

  81. Moffat TP (1999) Scanning tunneling microscopy studies of metal electrodes. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry vol 21. Marcel Dekker, New York, pp 211–316

    Google Scholar 

  82. Manne S, Hansma PK, Massie J, Eiling VB, Gewirth AA (1991) Science 251:185

    Article  Google Scholar 

  83. Itaya K, Sugawara S, Sashikata K, Furuya N (1990) J Vac Sci Technol A8:515

    Google Scholar 

  84. Gewirth AA, Siegenthaler H (1995) Nanoscale probes of the solid/liquid interface. Kluwer, New York

    Google Scholar 

  85. Bard AJ, Fan F-R, Kwak J, Lev O (1989) Anal Chem 61:132

    Article  CAS  Google Scholar 

  86. Moses PR, Wier L, Murray RW (1975) Anal Chem 47:1889

    Article  Google Scholar 

  87. Merz A, Bard AJ (1978) J Am Chem Soc 100:3222

    Article  CAS  Google Scholar 

  88. Van de Mark MR, Miller LL (1978) J Am Chem Soc 100:3223

    Article  Google Scholar 

  89. Inzelt G (2008) Conducting polymers. Springer, Berlin

    Google Scholar 

  90. Murray RW (ed) (1992) Molecular design of electrode surface. Wiley, New York

    Google Scholar 

  91. Brattain WH, Garrett CGB (1955) Bell System Techn J 34:129

    Google Scholar 

  92. Gerischer H, Beck F (1957) Z phys Chem NF 13:389

    CAS  Google Scholar 

  93. Pleskov YuV, Kabanov BN (1958) Dokl Akad Nauk SSSR 123:884

    CAS  Google Scholar 

  94. Gerischer H (1960) Z phys Chem NF 26:223–325

    CAS  Google Scholar 

  95. Laitinen HA, Tishler RP, Roe DK (1960) J Electrochem Soc 107:546

    Article  CAS  Google Scholar 

  96. Arvia AJ, Videla HA (1964) Electrochim Acta 9:1149

    Article  CAS  Google Scholar 

  97. Bard AJ, Stratmann M, Licht S (eds) (2002) Semiconductor electrodes and photoelectrochemistry. Encyclopedia of electrochemistry, vol 6. Wiley-VCH, Weinheim

    Google Scholar 

  98. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  99. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  100. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  101. Hush NS (1958) J Chem Phys 28:962

    Article  CAS  Google Scholar 

  102. Hush NS (1961) Trans Faraday Soc 57:557

    Article  CAS  Google Scholar 

  103. Dogonadze RR, Kuznetsov AM, Chizmadzhev YuA (1964) Zh Fiz Khim 38:1195

    CAS  Google Scholar 

  104. Levich VG, Dogonadze RR (1959) Dokl Akad Nauk SSSR 124:123

    CAS  Google Scholar 

  105. Libby WF (1952) J Phys Chem 56:863

    Article  CAS  Google Scholar 

  106. Randles JEB (1952) Trans Faraday Soc 48:828

    Article  CAS  Google Scholar 

  107. Weiss J (1954) Proc R Soc Lond A222:128

    Google Scholar 

  108. Fletcher S (2010) J Solid State Electrochem 14:705

    Article  CAS  Google Scholar 

  109. Frumkin AN, Bagotsky VS, Iofa ZA, Kabanov BN (1952) Kinetika elektrodnikh processov. Izd. MGU, Moskva

  110. Kazarinov VE (ed) (1981) Dvoinoj sloj i elektrodnaya kinetika. Nauka, Moskva

    Google Scholar 

  111. Vetter KJ (1961) Elektrochemische kinetik. Springer, Berlin

    Google Scholar 

  112. Vetter KJ (1967) Electrochemical kinetics. Academic Press, New York

    Google Scholar 

  113. Delahay P (1965) Double layer and electrode kinetics. Interscience division, Wiley, New York

    Google Scholar 

  114. Conway BE (1965) Theory and principles of electrode processes. Ronald, New York

    Google Scholar 

  115. Erdey-Grúz T (1969) Elektródfolyamatok kinetikája. Akadémiai Kiadó, Budapest

    Google Scholar 

  116. Erdey-Grúz T (1972) Kinetics of electrode processes. Akadémiai Kiadó, Budapest

    Google Scholar 

  117. Gileadi E (1993) Electrode kinetics. VCH, New York

    Google Scholar 

  118. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Inzelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inzelt, G. Milestones of the development of kinetics of electrode reactions. J Solid State Electrochem 15, 1373–1389 (2011). https://doi.org/10.1007/s10008-011-1301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1301-3

Keywords

Navigation