Skip to main content
Log in

Barrier and semiconducting properties of thin anodic films on chromium in an acid solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The study of barrier and semiconducting properties of anodically formed oxide films on chromium in an acid solution was carried out using the Cr-quartz crystal electrode. The oxide film formation and growth occur through an anion vacancies transport via a low-field-assisted mechanism (H = 106 V cm−1). The anion diffusion coefficient, which quantitatively describes the transport of point defects within the growing film, was calculated from capacitance data using the Nernst-Planck equation for low-field limit approximation and Mott-Schottky analysis. The depletion region in the passive film, close to the film|electrolyte interface, dominates the semiconducting properties. The passive film on Cr in an acid solution behaves as an n-type semiconductor. An energy-band structure model of the passive film is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Area of the electrode (cm2)

c :

Concentration (mol dm−3)

C :

Capacitance (F cm−2)

C SC :

Space charge capacitance (F cm−2)

CPE:

Constant phase element

D O :

Diffusivity of oxygen vacancies (cm2 s−1)

e :

Electron charge (1.602 × 10−19 C)

E :

Potential (V)

E f :

Film formation potential (V)

EC, EV:

Conduction (valence) band edge of semiconductor

E F :

Fermi level

E fb :

Flat-band potential of semiconductor (V)

f :

Frequency (Hz)

f c :

Characteristic frequency (Hz)

F :

Faraday constant (96,500 C mol−1)

H :

Electric field strength (V cm−1)

j :

Current density (A cm−2)

J O :

Steady state flux of oxygen vacancies (s−1 cm−2)

jω :

Complex variable for sinusoidal perturbations with ω =2fπ

k :

Boltzman constant (1.38 × 10−23 J K−1)

L ss :

Layer thickness (nm)

M i :

Molar mass of a species i (g mol−1)

N D :

Donor concentration (cm−3)

n :

Number of electrons interchanged

p :

Concentration of holes

Q :

Constant of the CPE (Ω−1 cm−2 sα)

Q :

Charge (C cm−2)

R :

Resistance (Ω cm2)

R el :

Solution resistance (Ω cm2)

T :

Temperature (°C)

t :

Time (s)

V :

Molar volume of the surface oxide (cm3 mol−1)

Z :

Electrode impedance (Ω cm2)

Z imag :

Imaginary part of the impedance (Ω cm2)

Z real :

Real part of the impedance (Ω cm2)

α:

CPE power

ε :

Dielectric constant of the film

ε o :

Dielectric constant of vacuum (8.85 × 10−14 F cm−1)

δ SC :

Space charge thickness (nm)

Δm :

Mass-change sensitivity (ng Hz−1)

γ :

Charge fraction

ω :

Angular frequency (Hz)

ν:

Scan rate (mV s−1)

References

  1. Babić R, Metikoš-Huković M (1993) J Electroanal Chem 358:143–160

    Article  Google Scholar 

  2. Metikoš-Huković M, Omanović S, Babić R, Milošev I (1994) Ber Bunsenges Phys Chem 98:1243–1249

    Google Scholar 

  3. Metikoš-Huković M, Babić R (2009) Corros Sci 51:70–75

    Article  Google Scholar 

  4. Metikoš-Huković M, Pilić Z, Babić R, Omanović D (2006) Acta Biomater 2:693–700

    Article  Google Scholar 

  5. Asami K, Hashimoto K, Shimodaira S (1978) Corros Sci 18:151–160

    Article  CAS  Google Scholar 

  6. Moffat TP, Latanision RM (1992) J Electrochem Soc 139:1869–1879

    Article  CAS  Google Scholar 

  7. Moffat TP, Yang H, Fan FRF, Bard AJ (1992) J Electrochem Soc 139:3158–3167

    Article  CAS  Google Scholar 

  8. Sugimoto K, Matsuda S (1980) Mat Sci Eng 42:181–189

    Article  CAS  Google Scholar 

  9. Sunseri C, Piazza S, DiQuatro F (1990) J Electrochem Soc 137:2411–2417

    Article  CAS  Google Scholar 

  10. Bojinov M, Fabricius G, Laitinen T, Saario T, Sundholm G (1998) Electrochim Acta 44:247–261

    Article  CAS  Google Scholar 

  11. Maurice V, Yang WP, Marcus P (1994) J Electrochem Soc 141:3016–3027

    Article  CAS  Google Scholar 

  12. Kim H, Hara N, Sugimoto K (1999) J Electrochem Soc 146:3679–3685

    Article  CAS  Google Scholar 

  13. Haupt S, Strehblow H-H (1987) J Electroanal Chem 228:365–392

    Article  CAS  Google Scholar 

  14. Dobbelaar JAL, De Wit JHW (1990) J Electrochem Soc 137:2038–2046

    Article  CAS  Google Scholar 

  15. Seo M, Saito R, Saito N (1980) J Electrochem Soc 127:1909–1912

    Article  CAS  Google Scholar 

  16. Fujimoto S, Chihara O, Shibata T (1998) Mat Sci Forum 289–292:989–996

    Article  Google Scholar 

  17. Tsuchiya H, Fujimoto S, Chihara O, Shibata T (2002) Electrochim Acta 47:4357–4366

    Article  CAS  Google Scholar 

  18. Harrington SP, Devine TM (2009) J Electrochem Soc 156:C154–C159

    Article  CAS  Google Scholar 

  19. Metikoš-Huković M, Ceraj-Cerić M (1987) J Electrochem Soc 134:2193–2197

    Article  Google Scholar 

  20. Kim J, Cho E, Kwon H (2001) Electrochim Acta 47:415–421

    Article  CAS  Google Scholar 

  21. Kong D-S, Chen S-H, Wang C, Yang W (2003) Corros Sci 45:747–758

    Article  CAS  Google Scholar 

  22. Searson PC, Latanision RM (1990) Electrochim Acta 35:445–450

    Article  CAS  Google Scholar 

  23. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  24. Gerretsen JH, De Wit JHW (1990) Corros Sci 30:1075–1084

    Article  CAS  Google Scholar 

  25. Olsson COA, Hamm D, Landolt D (2000) J Electrochem Soc 147:2563–2571

    Article  CAS  Google Scholar 

  26. Gregori J, Garcia-Jareno JJ, Vincente F (2006) Electrochem Commun 8:683–687

    Article  CAS  Google Scholar 

  27. Gregori J, Garcia-Jareno JJ, Gimenez-Romero D, Vincente F (2006) Electrochim Acta 52:658–664

    Article  CAS  Google Scholar 

  28. Weast RC (1962) Handbook of chemistry and physics. The Chemical Rubber Co., Cleveland

    Google Scholar 

  29. Macdonald DD, Urquidi-Macdonald M (1990) J Electrochem Soc 137:2395–2399

    Article  CAS  Google Scholar 

  30. Macdonald DD (1992) J Electrochem Soc 139:3434–3449

    Article  CAS  Google Scholar 

  31. Liu J, Macdonald DD (2001) J Electrochem Soc 148:B425–B430

    Article  CAS  Google Scholar 

  32. Sikora E, Sikora J, Macdonald DD (1996) Electrochim Acta 41:783–789

    Article  CAS  Google Scholar 

  33. Vasquez G, Gonzales I (2007) Electrochim Acta 52:6771–6777

    Article  Google Scholar 

  34. Bojinov M, Fabricius G, Laitinen T, Makela K, Saario T, Sundholm G (2001) Electrochim Acta 46:1339–1358

    Article  CAS  Google Scholar 

  35. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley & Sons. Inc., New Jersey

    Book  Google Scholar 

  36. Jorcin J-B, Orazem ME, Pebere N, Tribollet B (2006) Electrochim Acta 51:1473–1479

    Article  CAS  Google Scholar 

  37. Orazem ME, Pebere N, Tribollet B (2006) J Electrochem Soc 153:B129–B136

    Article  CAS  Google Scholar 

  38. Boukamp BA (1986) Solid State Ionics 18–19:136–140

    Article  Google Scholar 

  39. Brug GJ, van der Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  40. Sikora E, Macdonald DD (1997) Solid State Ionics 94:141–150

    Article  CAS  Google Scholar 

  41. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New York

    Google Scholar 

  42. De Gryse N, Gomes P, Cardon F, Vennik J (1975) J Electrochem Soc 122:711–712

    Article  Google Scholar 

  43. Metikoš-Huković M, Omanović S, Jukić A (1999) Electrochim Acta 45:977–986

    Article  Google Scholar 

Download references

Acknowledgement

The financial support of the Ministry of Science, Education and Sports of the Republic of Croatia under the 125-0982904-2923 grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Metikoš-Huković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrović, Ž., Lajçi, N., Metikoš-Huković, M. et al. Barrier and semiconducting properties of thin anodic films on chromium in an acid solution. J Solid State Electrochem 15, 1201–1207 (2011). https://doi.org/10.1007/s10008-010-1192-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1192-8

Keywords

Navigation