Skip to main content

Advertisement

Log in

Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The inhibition and adsorption behavior of 2-undecyl-1-sodium ethanoate-imidazoline salt (2M2) and thiourea (TU) on N80 mild steel in CO2-saturated 3 wt.% NaCl solutions was studied at 25 °C, pH 4, and 1 bar CO2 partial pressure using electrochemical methods. It was found that inhibition efficiency (η%) increased with increase in 2M2 concentration but decreased with increase in TU concentration with optimum η% value at 20 mg l−1 TU. The data suggest that the compounds functioned via a mixed-inhibitor mechanism. The inhibition process is attributed to the formation of an adsorbed film of 2M2 and TU via the inhibitors polycentric adsorption sites on the metal surface which protects the metal against corrosion. A synergistic effect was observed between TU and 2M2. Potential of unpolarizability, E u, was observed in the presence of 100 mg l−1 TU which was shifted positively in the presence of 2M2–100 mg l–1 TU blends, which suggests that the presence of 2M2 stabilized the adsorption of TU molecules on the surface of the metal. The adsorption characteristics of 2M2 were approximated by Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gray LGS, Anderson BG, Danysh MJ, Tremaine PR (1990) Proceedings of corrosion/1990, paper no 40. NACE International, Houston

    Google Scholar 

  2. Heuer JK, Stubbins JF (1999) Corros Sci 41:1231

    Article  CAS  Google Scholar 

  3. Nordsveen M, Nesic S, Nyborg R, Strangeland A (2003) Corrosion 59:443

    Article  CAS  Google Scholar 

  4. Nesic S, Postlethwaite J, Olsen S (1996) Corrosion 52:280

    Article  CAS  Google Scholar 

  5. Nesic S (2007) Corros Sci 49:4308

    Article  CAS  Google Scholar 

  6. Okafor PC, Nesic S (2007) Chem Eng Comm 194:141

    Article  CAS  Google Scholar 

  7. Okafor PC, Brown B, Nesic S (2009) J Appl Electrochem 39:873

    Article  CAS  Google Scholar 

  8. Webster S, Harrop D, McMahon A, Partidge GJ (1993) Proceedings of NACE corrosion/1993 Paper no 109. NACE International, Houston

    Google Scholar 

  9. Tan YJ, Bailey S, Kinsella B (1996) Corros Sci 38:1545

    Article  CAS  Google Scholar 

  10. Ramachandran S, Jovancicevic V (1999) Corrosion 55:259

    Article  CAS  Google Scholar 

  11. Durnie W, Kinsella B, De Marco R, Jefferson A (2001) J Appl Electrochem 31:1221

    Article  CAS  Google Scholar 

  12. Hong T, Sun YH, Jepson WP (2002) Corros Sci 44:101

    Article  CAS  Google Scholar 

  13. Bilkova K, Hackerman N (2002) Proceedings of corrosion/2002 Paper no 284. NACE International, Houston

    Google Scholar 

  14. Lopez DA, Schreiner WH, de Sanchez SR, Simison SN (2003) Appl Surf Sci 207:69

    Article  CAS  Google Scholar 

  15. Zhang G, Chena C, Lub M, Chai C, Wu Y (2007) Mater Chem Phys 105:331

    Article  CAS  Google Scholar 

  16. Okafor PC, Liu X, Zheng YG (2009) Corros Sci 51(4):761

    Article  CAS  Google Scholar 

  17. Liu X, Zheng YG, Okafor PC (2009) Mater & Corros 60(7):507

    Article  CAS  Google Scholar 

  18. Sastri VS (1998) Corrosion inhibitors—principles and applications. Wiley, Chichester

    Google Scholar 

  19. Cavallro L, Bolognesi G (1946–1947) Att Acad Sci Farrara 24:1

    Google Scholar 

  20. Makrides AC, Hackerman N (1955) Ind Engng Chem 47:1773

    Article  CAS  Google Scholar 

  21. Pillai KC, Narayan R (1978) J Electrochem Soc 125:1393

    Article  CAS  Google Scholar 

  22. Ateya BG, El-Anadouli BE, El-Nizamy FM (1984) Corros Sci 24:497

    Article  CAS  Google Scholar 

  23. Mendez S, Andreasen G, Schilardi PL, Figueroa M, Vazquez L, Salvarezza RS, Arvia AJ (1998) Langmuir 14:2515

    Article  CAS  Google Scholar 

  24. Zhao J, Li N, Gao S, Cui G (2007) Electrochem Comm 9:2261

    Article  CAS  Google Scholar 

  25. Awad MK (2004) J Electroanal Chem 567:219

    Article  CAS  Google Scholar 

  26. Bonne MJ, Helton M, Edler K, Marken F (2007) Electrochem Comm 9:42

    Article  CAS  Google Scholar 

  27. He XY, Deng HY, Li R, Fei XD, Wang HY, Deng ZY (2008) Acta Metall Sin (Engl Lett) 21:65

    Article  CAS  Google Scholar 

  28. Wang S, Lin J, Chen F, Hu M, Hu X, Han Y, Gao Q (2004) Sci China Ser B Chem 47:480

    Article  CAS  Google Scholar 

  29. Ebenso EE, Ekpe UJ, Ita BI, Offiong OE, Ibok UJ (1999) Mater Chem Phys 60:79

    Article  CAS  Google Scholar 

  30. Schweinsgberg D, George G, Nanayakkawa A, Steinert D (1988) Corros Sci 28:33

    Article  Google Scholar 

  31. El-Awady AA, Abd-El-Nabey BA, Aziz SG (1992) J Electrochem Soc 139:2149

    Article  CAS  Google Scholar 

  32. Jutner K (1990) Electrochim Acta 35:1501

    Article  Google Scholar 

  33. Paskossy T (1994) J Electrochem Soc 364:111

    Google Scholar 

  34. Jargelius-Pettersson RFA, Pound BG (1998) J Electrochem Soc 145:1462

    Article  CAS  Google Scholar 

  35. Bai L, Conway BE (1991) J Electrochem Soc 128:2897

    Article  Google Scholar 

  36. Franceschetti DR, Macdonald JR (1977) J Electrochem Soc 82:271

    Google Scholar 

  37. Juttner K (1990) Electrochim Acta 35:1501

    Article  Google Scholar 

  38. Khaled KF, Hackerman N (2003) Electrochim Acta 48:2715

    Article  CAS  Google Scholar 

  39. Khaled KF (2003) Electrochim Acta 48:2493

    Article  CAS  Google Scholar 

  40. Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2006) Electrochim Acta 51:4080

    Article  CAS  Google Scholar 

  41. Larabi L, Harek Y, Benali O, Ghalem S (2005) Prog Org Coat 54

  42. Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33

    Article  Google Scholar 

  43. Villamizar W, Casales M, Gonzales-Rodriguez JG, Martinez L (2006) Mater & Corros 57:696

    Article  CAS  Google Scholar 

  44. Hsu CH, Manfeld F (2001) Corrosion 57:747

    Article  CAS  Google Scholar 

  45. Okafor PC, Oguzie EE, Iniama GE, Ikpi ME, Ekpe UJ (2008) Glob J Pure & Appl Sci 14:89

    CAS  Google Scholar 

  46. Ameer MA, Khamis E, Al-Senani G (2000) Ads Sci Tech 18:177

    Article  CAS  Google Scholar 

  47. Bockris JO, Swinkels DAJ (1964) J Electrochem Soc 11:736

    Article  Google Scholar 

  48. Ateya BG, El-Anadouli BE, El-Nizamy FM (1984) Corros Sci 24:509

    Article  CAS  Google Scholar 

  49. Durnie W, De Marco R, Jefferson R, Kinsella B (1999) J Electrochem Soc 146:1751

    Article  CAS  Google Scholar 

  50. Ebenso EE, Okafor PC, Offiong OE, Ita BI, Ibok UJ, Ekpe UJ (2003) Bull Electrochem 17:459

    Google Scholar 

  51. Brown GM, Hope GA, Schweinsberg DP, Fredericks PM (1995) J Electroanal Chem 380:161

    Article  Google Scholar 

  52. Tian M, Pell WG, Conway BE (2003) J Electroanal Chem 552:279

    Article  CAS  Google Scholar 

  53. El-Egama SS (2008) Corros Sci 50:928

    Article  CAS  Google Scholar 

  54. Heusler KE, Cartledge GH (1961) J Electrochem Soc 108:732

    Article  CAS  Google Scholar 

  55. Kuo HC, Nobe KJ (1978) Electrochem Soc 125:853

    Article  CAS  Google Scholar 

  56. MacFarlane DR, Smedley SI (1986) J Electrochem Soc 133:2240

    Article  CAS  Google Scholar 

  57. Bartos M, Hackerman N (1992) J Electrochem Soc 139:2604

    Article  Google Scholar 

  58. Feng Y, Siow KS, Teo WK, Hsieh AK (1999) Corros Sci 41:829

    Article  CAS  Google Scholar 

  59. Okafor PC, Zheng YG (2009) Corros Sci 51:850

    Article  CAS  Google Scholar 

  60. Fragnani A, Trabanelli G (1999) Corrosion 55:653

    Article  Google Scholar 

  61. Oguzie EE, Li Y, Wang FH (2007) J Coll Interf Sci 310:90

    Article  CAS  Google Scholar 

  62. Kuznetsov YI, Andreev NN (1996) Proceedings of corrosion/1996 paper no 214. NACE International, Houston

    Google Scholar 

Download references

Acknowledgements

P. C. Okafor acknowledges the Chinese Academy of Sciences (CAS) and the Academy of Sciences for the Developing World (TWAS) for the CAS-TWAS Postdoctoral Fellowship. The authors acknowledge the financial support of the Special Funds for the Major State Basic Research Projects (2006CB705800) and the Special Funds of PetroChina (07-02Z-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okafor, P.C., Liu, C.B., Liu, X. et al. Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea. J Solid State Electrochem 14, 1367–1376 (2010). https://doi.org/10.1007/s10008-009-0963-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0963-6

Keywords

Navigation