Skip to main content
Log in

Synthesis and characteristics of hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two different molecular weight hyperbranched polymers (HBP(L)-(PA)2 and HBP(H)-(PA)2) with two phosphonic acid groups as a functional group at the periphery and a low molecular weight hyperbranched polymer (HBP(L)-(PA)2-Ac) with both two phosphonic acid groups and an acryloyl group as a cross-linker at the periphery were successfully synthesized as thermally stable proton-conducting electrolytes. A cross-linked electrolyte membrane (CL-HBP(L)-(PA)2) was prepared by thermal polymerization of the HBP(L)-(PA)2-Ac using benzoyl peroxide. Ionic conductivities of the HBP(L)-(PA)2, the HBP(H)-(PA)2, and the CL-HBP(L)-(PA)2 under dry condition and their thermal properties were investigated, and also, the effect of the phosphonic acid group number on them was discussed. Ionic conductivities of the HBP(L)-(PA)2 and the HBP(H)-(PA)2 were found to be 1.5 × 10−5 S cm−1 at 150 °C and 3.6 × 10−6 S cm−1 at 143 °C, respectively, under dry condition, and showed the Vogel–Tamman–Fulcher type temperature dependence. The hyperbranched polymers and the cross-linked electrolyte membrane were thermally stable up to 300 °C, and the cross-linked electrolyte membrane (CL-HBP-(PA)2) had suitable thermal stability as an electrolyte membrane for the high-temperature fuel cells under dry condition. Fuel cell measurement using a single membrane electrode assembly cell with the cross-linked membrane was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kreuer KD (1996) Chem Mater 8:610

    Article  CAS  Google Scholar 

  2. Srinivasan S, Mosdale R, Stevens P, Yang C (1999) Annu Rev Energ Environ 24:281

    Article  Google Scholar 

  3. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  4. Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) J Power Sources 103:1

    Article  CAS  Google Scholar 

  5. Savadogo O (1998) J New Mater Electrochem Syst 1:47

    CAS  Google Scholar 

  6. Savadogo O (2004) J Power Sources 127:135

    Article  CAS  Google Scholar 

  7. Karlsson LE, Jannasch P (2004) J Membr Sci 230:61

    Article  CAS  Google Scholar 

  8. Jannasch P (2003) Curr Opin Colloid Interface Sci 8:211

    Article  Google Scholar 

  9. Wainright JS, Wang J, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:L121

    Article  CAS  Google Scholar 

  10. Wang J, Savinell RF, Wainright JS, Litt M, Yu H (1996) Electrochem Acta 41:193

    Article  CAS  Google Scholar 

  11. Schuster M, Meyer WH, Wagner G, Herz HG, Ise M, Schuster M, Kreuer KD, Maier J (2001) Solid State Ion 145:85

    Article  CAS  Google Scholar 

  12. Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Chem Mater 16:329

    Article  CAS  Google Scholar 

  13. Kreuer KD (2001) J Membr Sci 185:29

    Article  CAS  Google Scholar 

  14. Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) Electrochim Acta 48:2165

    Article  CAS  Google Scholar 

  15. Persson JC, Jannasch P (2003) Chem Mater 15:3044

    Article  CAS  Google Scholar 

  16. Persson JC, Jannasch P (2005) Macromolecules 38:3283

    Article  CAS  Google Scholar 

  17. Kreuer KD, Schuster M, Paddison SJ, Spohr E (2004) Chem Rev 104:4637

    Article  CAS  Google Scholar 

  18. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH Publishers, New York

    Google Scholar 

  19. Scrosati B (ed) (2003) Applications of electroactive polymers. Chapman and Hall, London

    Google Scholar 

  20. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, London

    Google Scholar 

  21. Itoh T, Hamaguchi Y, Uno T, Kubo M, Aihara Y, Sonai A (2006) Solid State Ion 177:185

    Article  CAS  Google Scholar 

  22. Itoh T, Hamaguchi Y, Hirai K, Uno U, Kubo M, Aihara Y, Sonai A (2006) Synthesis, ionic conductivity, and thermal properties of hyperbranched polymer with phosphonic acid groups at the chain ends for high temperature fuel cell. In: Fuller T, Bock C, Cleghorn S, Gasteiger H, Jarvi T, Mathias M, Murthy M, Nguyen T, Ramani V, Stuve E, Zawodzinski T (eds) ECS transactions, proton exchange membrane fuel cells 6, vol 3. The Electrochemical Society, Pennington, pp 113–121

    Google Scholar 

  23. Itoh T, Hirai K, Tamura M, Uno U, Kubo K, Aihara A (2008) J Power Sources 178:627

    Article  CAS  Google Scholar 

  24. Itoh T, Ikeda M, Hirata N, Moriya Y, Kubo M, Yamamoto O (1999) J Power Sources 81–82:824

    Article  Google Scholar 

  25. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  26. Tamman G, Hesse W (1926) Anorg Allg Chem 156:245

    Article  CAS  Google Scholar 

  27. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, T., Hirai, K., Tamura, M. et al. Synthesis and characteristics of hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells. J Solid State Electrochem 14, 2179–2189 (2010). https://doi.org/10.1007/s10008-009-0947-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0947-6

Keywords

Navigation