Skip to main content
Log in

Controllable solvo-hydrothermal electrodeposition of lithium vanadate uniform carnation-like nanostructure and their electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we successfully developed a novel method to synthesize uniform carnation-like lithium vanadate nanostructures by combining electrochemical deposition and solvo-hydrothermal method. The samples were characterized by field emission scanning electron microscopy, power X-ray diffraction, and thermogravimetric analysis. The results show that the LiV3O8·H2O carnation-like nanostructure is 2–3 μm in diameter and assembled from nanosheets with thickness of 10–20 nm. Based on a series of experiments, we proposed a possible growth mechanism, in which the supersaturation derived from electric field and high conductivity under solvo-hydrothermal conditions due to the successive growth of lithium vanadate. In our work, we have discussed three different solvo-hydrothermal systems. It is proved that the morphology of coating materials could be conveniently controlled by selecting alcohols with different chain of alkyl. Compared with short-chain alcohol, CH3–(CH2)6–CH2–OH was beneficial to promote the oriented growth of nanosheets. Electrochemical performances of lithium vanadate cathode materials were characterized by galvanostatic charge–discharge, and LiV3O8 synthesized in n-octanol aqueous solution exhibits the highest capacity of 357 mAh g−1 and best cycle stability. Furthermore, the influence of solvo-hydrothermal conditions on the morphology and electrochemical performance of products has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Science 288:494

    Article  CAS  Google Scholar 

  2. Hu J, Odom TW, Lieber CM (1999) Acc Chem Res 32:435

    Article  CAS  Google Scholar 

  3. Xincun D, Guanghai L, Hechang L (2008) Nano Letters 8(5):1286–1290

    Google Scholar 

  4. Bingqiang C, Xuemei T, Sung Hwan H, Yue L, Sung Oh C, Guanghai L, Weiping C (2007) J Phys Chem C 111:2470

    Article  Google Scholar 

  5. Hill LI, Verbaere A, Guyomard D (2003) J Power Sources 119:226

    Article  Google Scholar 

  6. Yoshimura M, Suchanek WL, Byrappa K (2000) MRS Bull 25:17

    CAS  Google Scholar 

  7. Lee JH, Han KS, Lee BJ, Seo SI, Yoshimura M (2004) Electrochim Acta 50:467

    Article  CAS  Google Scholar 

  8. Jayakrishnan R, Hodes G (2003) Thin Solid Films 440:19

    Article  CAS  Google Scholar 

  9. Pistoia G, Panero S, Tocci M, Moshtev RV, Manev V (1984) Solid State Ionics 13:311

    Article  CAS  Google Scholar 

  10. Manev V, Momchilov A, Nassalevska A, Pistoia G, Pasquali M (1995) J Power Sources 54:501

    Article  CAS  Google Scholar 

  11. Murphy DW, Christian PA, Disalvo FJ, Carides JN (1979) J Electrochem Soc 126:497

    Article  CAS  Google Scholar 

  12. Wadsley AD (1957) Acta Cryst 10:261

    Article  CAS  Google Scholar 

  13. Dubarry M, Gaubicher J, Guyomard D, Durupthy O, Steunou N, Livage J, Dupre N, Grey CP (2005) Chem Mater 17:2276

    Article  CAS  Google Scholar 

  14. Xu HY, Wang H, Song ZQ, Wang YW, Yan H, Yoshimura M (2004) Electrochim Acta 49:349

    Article  CAS  Google Scholar 

  15. Yang G, Wang G, Hou WH (2005) J Phys Chem B 109:11186

    Article  CAS  Google Scholar 

  16. Tran N, Bramnik KG, Hibst H, Prolss J, Mronga N, Holzapfel M, Scheifele W, Novak P (2008) J Electrochem Soc 155:A384

    Article  CAS  Google Scholar 

  17. Gao H, Jiang CY, Wan CR (2004) J Power Sources 125:90

    Article  CAS  Google Scholar 

  18. Jiao LF, Liu L, Sun JL, Yang L, Zhang YH, Yuan HT, Wang YM, Zhou XD (2008) J Phys Chem C 112:18249

    Article  CAS  Google Scholar 

  19. Feng CQ, Huang LF, Guo ZP, Wang JZ, Liu HK (2007) J Power Sources 174:548

    Article  CAS  Google Scholar 

  20. Chew SY, Feng CQ, Ng SH, Wang JZ, Guo ZP, Liu HK (2007) J Electrochem Soc 154:A633

    Article  CAS  Google Scholar 

  21. Liu YM, Zhou XC, Guo YL (2009) Electrochim Acta 54:3184

    Article  CAS  Google Scholar 

  22. Liu XH, Wang JQ, Zhang JY, Yang SR (2007) J Mater Sci 42:867

    Article  CAS  Google Scholar 

  23. Gu YX, Chen DR, Jiao XL, Liu FF (2006) J Mater Chem 16:4361

    Article  CAS  Google Scholar 

  24. Liu HM, Wang YG, Wang KX, Wang YR, Zhou HS (2009) J Power Sources 192:668

    Article  CAS  Google Scholar 

  25. Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN (2008) Nano Letters 8:2664

    Article  CAS  Google Scholar 

  26. Li XL, Li WJ, Chen XY, Shi CW (2006) J Cryst Growth 297:387

    Article  CAS  Google Scholar 

  27. Li XL, Chen XJ, Chen XY, Han CL, Shi CW (2007) J Cryst Growth 309:43

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the annual key project of Anhui Province of China (no. 07020203003 and no. 08020203005)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Li, P., Luo, M. et al. Controllable solvo-hydrothermal electrodeposition of lithium vanadate uniform carnation-like nanostructure and their electrochemical performance. J Solid State Electrochem 14, 1325–1332 (2010). https://doi.org/10.1007/s10008-009-0940-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0940-0

Keywords

Navigation