Skip to main content
Log in

Effect of thermal annealing of poly(3-octylthiophene) films covered stainless steel on corrosion properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leffler B (2001) STAINLESS—stainless steels and their properties

  2. Galal A, Atta NF, Al-Hassan MHS (2005) Mater Chem Phys 89:38

    Article  CAS  Google Scholar 

  3. Tsay LW, Yu SC, Huang RT (2007) Curr Sci 49:2973

    Article  CAS  Google Scholar 

  4. Rokovic MK, Kvastek K, Horvat-Radosevic V, Duic LJ (2007) Curr Sci 49:2567

    Article  Google Scholar 

  5. Hür E, Bereket G, Sahin Y (2006) Mater Chem Phys 100:19

    Article  Google Scholar 

  6. Mengoli G, Munari MT, Bianco P, Musiani MM (1981) J Appl Polym Sci 26:4247

    Article  CAS  Google Scholar 

  7. Deberry DW (1985) J Electrochem Soc 132(5):1022

    Article  CAS  Google Scholar 

  8. Le HNT, Garcia B, Deslouis C, Xuan QL (2002) J Appl Electrochem 32:105

    Article  Google Scholar 

  9. Akundy GS, Rajagopalan R, Iroh JO (2002) J Appl Polym Sci 83:1970

    Article  CAS  Google Scholar 

  10. Tüken T (2006) Surf Coat Technol 200:4713

    Article  Google Scholar 

  11. Lallemand F, Auguste D, Amato C, Hevesi L, Delhalle J, Mekhalif Z (2007) Electrochim Acta 52:4334

    Article  CAS  Google Scholar 

  12. Souza S (2007) Surf Coat Technol 201:7574

    Article  Google Scholar 

  13. Dominis A, Spinks G, Kane-Maguire LAP, Wallace GG (2002) Polym Prepr 41:1748

    Google Scholar 

  14. Kilmartin PA, Trier L, Wright GA (2002) Synth Met 131:99

    Article  CAS  Google Scholar 

  15. Berry BC, Shaikh AU, Viswanathan T (2000) Polym Prepr 41:1739

    CAS  Google Scholar 

  16. Yeh JM, Liou SJ, Lai CY, Wu PC (2001) Chem Mater 13:1131

    Article  CAS  Google Scholar 

  17. Sathiyanarayanan S, Azim SS, Venkatachari G (2007) Synth Met 157:205

    Article  CAS  Google Scholar 

  18. Tüken T, Yazıcı B, Erbil M (2005) Appl Surf Sci 239:398

    Article  Google Scholar 

  19. Ren S, Barkey D (1992) J Electrochem Soc 139:1021

    Article  CAS  Google Scholar 

  20. Kousik G, Pitchumani S, Renganathan NG (2001) Prog Org Coat 43:286

    Article  CAS  Google Scholar 

  21. Tüken T, Yazici B, Erbil M (2004) Prog Org Coat 51:205

    Article  Google Scholar 

  22. Deng Z, Smyrl WH, White HW (1989) J Electrochem Soc 136:2152

    Article  CAS  Google Scholar 

  23. Rammelt U, Nguyen PT, Plieth W (2001) Electrochim Acta 46:4251

    Article  CAS  Google Scholar 

  24. Galal A, Atta NF, Al-Hassan MHS (2005) Mater Chem Phys 89:28

    Article  CAS  Google Scholar 

  25. Bouklah M, Hammouti B, Aouniti A, Benhadda T (2004) Prog Org Coat 49:225

    Article  CAS  Google Scholar 

  26. Singh R, Kumar J, Singh RK, Kaur A, Sood KN, Rastogi RC (2005) Polymer 46:9126

    Article  CAS  Google Scholar 

  27. Kumar J, Singh RK, Rastogi RC, Singh R (2007) Mater Chem Phys 101:336

    Article  CAS  Google Scholar 

  28. Sugimoto R, Takeda S, Gu HB, Yoshino K (1986) Chem Express 1:635

    CAS  Google Scholar 

  29. Omanovic S, Roscoe SG (1999) Langmuir 15:8315

    Article  CAS  Google Scholar 

  30. Hang TTX, Truc TA, Nam TH, Oanh VK, Jorcin JB, Pébère N (2007) Surf Coat Technol 201:7408

    Article  CAS  Google Scholar 

  31. Galicia P, Batina N, González I (2006) J Phys Chem B 110:14398

    Article  CAS  Google Scholar 

  32. Han M, Hu Y, Sharma R, Warren GW, Nikles DE (2000) Polym Prepr 41:1757

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico, 52598-R) and Daniel Bahena Uribe for AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Nicho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

León-Silva, U., Nicho, M.E., González-Rodríguez, J.G. et al. Effect of thermal annealing of poly(3-octylthiophene) films covered stainless steel on corrosion properties. J Solid State Electrochem 14, 1089–1100 (2010). https://doi.org/10.1007/s10008-009-0918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0918-y

Keywords

Navigation